SRI LANKA STANDARD 659 : 2015 UDC 678.743.2 : 628.245

SPECIFICATION FOR UNPLASTICIZED POLY (VINYL CHLORIDE) FITTINGS FOR WATER SUPPLY AND FOR BURIED AND ABOVE GROUND DRAINAGE AND SEWERAGE UNDER PRESSURE (Second Revision)

SRI LANKA STANDARDS INSTITUTION

Sri Lanka Standard SPECIFICATION FOR UNPLASTICIZED POLY (VINYL CHLORIDE) FITTINGS FOR WATER SUPPLY AND FOR BURIED AND ABOVE GROUND DRAINAGE AND SEWERAGE UNDER PRESSURE (Second Revision)

SLS 659 : 2015 (AMD No.1 (AMD 517) Attached)

Gr. 14

Copyright Reserved SRI LANKA STANDARDS INSTITUTION No, 17, Victoria Place Elvitigala Mawatha, Colombo 08. Sri Lanka. Sri Lanka Standards are subject to periodical revision in order to accommodate the progress made by industry. Suggestions for improvement will be recorded and brought to the notice of the Committees to which the revisions are entrusted.

This standard does not purport to include all the necessary provisions of a contract.

© SLSI 2015

All right reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the SLSI.

Sri Lanka Standard SPECIFICATION FOR UNPLASTICIZED POLY (VINYL CHLORIDE) FITTINGS FOR WATER SUPPLY AND FOR BURIED AND ABOVE GROUND DRAINAGE AND SEWERAGE UNDER PRESSURE (Second Revision)

FOREWORD

This standard was approved by the Sectoral Committee on Materials, Mechanical Systems and Manufacturing Engineering and authorized for adoption and publication as a Sri Lanka Standard by the Council of the Sri Lanka Standards Institution on 2015-04-09.

This Sri Lanka standard is the second revision of **SLS 659** Specification for Unplasticized polyvinyl chloride pipe joints and fittings for potable cold water supplies, Part 1 Socket fittings for solvent welding, published in 1993. In this revision the title, scope, requirements for materials and dimensions of fittings have been revised.

For the purpose of deciding whether a particular requirement of this standard is complied with the final value, observed or calculated expressing the result of a test or an analysis, shall be rounded off in accordance with **SLS 102**. The number of significant figures to be retained in the rounded off value shall be the same as that of the specified value in this standard.

In the preparation of this standard, valuable assistance derived from the following publications of International Organization for Standardization is gratefully acknowledged.

ISO 1452 Plastics piping systems for water supply and for buried and above ground drainage and sewerage under pressure-Unplasticized poly (vinyl chloride) PVC-U Part 1: General Part 3: Fittings

1 SCOPE

This standard specifies the characteristics of fittings made from unplasticized poly (vinyl chloride) (PVC-U) for piping systems, intended for water supply for human consumption and for general purposes as well as for sewerage under pressure.

This standard specifies types and sizes of fittings and joints with components of PVC-U, other plastics and non plastics materials intended to be used for the following:

- a) water mains and services buried in the ground;
- b) conveyance of water above ground for both outside and inside buildings; and
- c) buried and above-ground drainage and sewerage under pressure.

Depending on the jointing method, this standard is applicable to the following types of fittings:

- Fittings for solvent cementing;
- Elastomeric ring seal fittings.

PVC-U fittings can be manufactured by injection moulding or fabricated from pipe.

This standard is also applicable to PVC-U flange adapters and to the corresponding flanges made from various materials.

2 **REFERENCES**

ISO 7-1	Pipe threads where pressure tight joints are made on the threads – Part 1: Dimensions, tolerances and designation
190 1452 1	e
ISO 1452-1	Plastics piping systems for water supply and for buried and above
	ground drainage and sewerage under pressure-Unplasticized poly
EN 902	(vinyl chloride) PVC-U, Part 1: General
EN 802	Plastic piping and ducting systems - Injection moulded thermoplastics
	fittings for pressure piping systems - Test method for maximum
	deformation by crushing
SLS ISO 580	Plastic piping and ducting systems - Injection-moulded thermoplastics
	fittings – Methods for visually assessing the effects of heating
SLS ISO 1167-1	Thermoplastics pipes, fittings and assemblies for the conveyance of
	fluids - Determination of the resistance to internal pressure
	Part 1: General method
SLS ISO 1167-3	Thermoplastics pipes, fittings and assemblies for the conveyance of
	fluids - Determination of the resistance to internal pressure
	Part 3: Preparation of components
SLS ISO 1183-1	Plastics - Methods of determining the density of non-cellular plastics
	Part 1: Immersion method, liquid pyknometer method and titration
	method
SLS ISO 2507-1	Thermoplastics pipes and fittings - Vicat softening temperature,
	Part 1: General test method
SLS ISO 2507-2	Thermoplastics pipes and fittings - Vicat softening temperature, Part 2:
SLS ISO 2507-2	Thermoplastics pipes and fittings - Vicat softening temperature, Part 2: Test conditions for unplasticized poly (vinyl chloride) (PVC-U) or
SLS ISO 2507-2	Thermoplastics pipes and fittings - Vicat softening temperature, Part 2: Test conditions for unplasticized poly (vinyl chloride) (PVC-U) or chlorinated poly (vinyl chloride) (PVC-C) pipes and fittings and for
	Thermoplastics pipes and fittings - Vicat softening temperature, Part 2: Test conditions for unplasticized poly (vinyl chloride) (PVC-U) or chlorinated poly (vinyl chloride) (PVC-C) pipes and fittings and for resistance poly (vinyl chloride) (PVC-HI) pipes
SLS ISO 2507-2 SLS ISO 3114	Thermoplastics pipes and fittings - Vicat softening temperature, Part 2: Test conditions for unplasticized poly (vinyl chloride) (PVC-U) or chlorinated poly (vinyl chloride) (PVC-C) pipes and fittings and for resistance poly (vinyl chloride) (PVC-HI) pipes Unplasticized polyvinyl chloride (PVC) pipes for potable water supply
SLS ISO 3114	Thermoplastics pipes and fittings - Vicat softening temperature, Part 2: Test conditions for unplasticized poly (vinyl chloride) (PVC-U) or chlorinated poly (vinyl chloride) (PVC-C) pipes and fittings and for resistance poly (vinyl chloride) (PVC-HI) pipes Unplasticized polyvinyl chloride (PVC) pipes for potable water supply - Extractability of lead and tin - Test method
	Thermoplastics pipes and fittings - Vicat softening temperature, Part 2: Test conditions for unplasticized poly (vinyl chloride) (PVC-U) or chlorinated poly (vinyl chloride) (PVC-C) pipes and fittings and for resistance poly (vinyl chloride) (PVC-HI) pipes Unplasticized polyvinyl chloride (PVC) pipes for potable water supply - Extractability of lead and tin - Test method Plastics piping systems - Plastic components - Determination of
SLS ISO 3114 SLS ISO 3126	Thermoplastics pipes and fittings - Vicat softening temperature, Part 2: Test conditions for unplasticized poly (vinyl chloride) (PVC-U) or chlorinated poly (vinyl chloride) (PVC-C) pipes and fittings and for resistance poly (vinyl chloride) (PVC-HI) pipes Unplasticized polyvinyl chloride (PVC) pipes for potable water supply - Extractability of lead and tin - Test method Plastics piping systems - Plastic components - Determination of dimensions
SLS ISO 3114	Thermoplastics pipes and fittings - Vicat softening temperature, Part 2: Test conditions for unplasticized poly (vinyl chloride) (PVC-U) or chlorinated poly (vinyl chloride) (PVC-C) pipes and fittings and for resistance poly (vinyl chloride) (PVC-HI) pipes Unplasticized polyvinyl chloride (PVC) pipes for potable water supply - Extractability of lead and tin - Test method Plastics piping systems - Plastic components - Determination of dimensions Unplasticized polyvinyl chloride (PVC-U) pipes for water supply-
SLS ISO 3114 SLS ISO 3126 ISO/TR 4191	Thermoplastics pipes and fittings - Vicat softening temperature, Part 2: Test conditions for unplasticized poly (vinyl chloride) (PVC-U) or chlorinated poly (vinyl chloride) (PVC-C) pipes and fittings and for resistance poly (vinyl chloride) (PVC-HI) pipes Unplasticized polyvinyl chloride (PVC) pipes for potable water supply - Extractability of lead and tin - Test method Plastics piping systems - Plastic components - Determination of dimensions Unplasticized polyvinyl chloride (PVC-U) pipes for water supply- Recommended practices for laying
SLS ISO 3114 SLS ISO 3126 ISO/TR 4191 SLS 102	Thermoplastics pipes and fittings - Vicat softening temperature, Part 2: Test conditions for unplasticized poly (vinyl chloride) (PVC-U) or chlorinated poly (vinyl chloride) (PVC-C) pipes and fittings and for resistance poly (vinyl chloride) (PVC-HI) pipes Unplasticized polyvinyl chloride (PVC) pipes for potable water supply - Extractability of lead and tin - Test method Plastics piping systems - Plastic components - Determination of dimensions Unplasticized polyvinyl chloride (PVC-U) pipes for water supply- Recommended practices for laying Rules for rounding off numerical values
SLS ISO 3114 SLS ISO 3126 ISO/TR 4191	Thermoplastics pipes and fittings - Vicat softening temperature, Part 2: Test conditions for unplasticized poly (vinyl chloride) (PVC-U) or chlorinated poly (vinyl chloride) (PVC-C) pipes and fittings and for resistance poly (vinyl chloride) (PVC-HI) pipes Unplasticized polyvinyl chloride (PVC) pipes for potable water supply - Extractability of lead and tin - Test method Plastics piping systems - Plastic components - Determination of dimensions Unplasticized polyvinyl chloride (PVC-U) pipes for water supply- Recommended practices for laying Rules for rounding off numerical values Specification for Unplasticized poly (vinyle chloride) pipes for water
SLS ISO 3114 SLS ISO 3126 ISO/TR 4191 SLS 102	Thermoplastics pipes and fittings - Vicat softening temperature, Part 2: Test conditions for unplasticized poly (vinyl chloride) (PVC-U) or chlorinated poly (vinyl chloride) (PVC-C) pipes and fittings and for resistance poly (vinyl chloride) (PVC-HI) pipes Unplasticized polyvinyl chloride (PVC) pipes for potable water supply - Extractability of lead and tin - Test method Plastics piping systems - Plastic components - Determination of dimensions Unplasticized polyvinyl chloride (PVC-U) pipes for water supply- Recommended practices for laying Rules for rounding off numerical values Specification for Unplasticized poly (vinyle chloride) pipes for water supply and for buried and above ground drainage and sewerage under
SLS ISO 3114 SLS ISO 3126 ISO/TR 4191 SLS 102 SLS 147	Thermoplastics pipes and fittings - Vicat softening temperature, Part 2: Test conditions for unplasticized poly (vinyl chloride) (PVC-U) or chlorinated poly (vinyl chloride) (PVC-C) pipes and fittings and for resistance poly (vinyl chloride) (PVC-HI) pipes Unplasticized polyvinyl chloride (PVC) pipes for potable water supply - Extractability of lead and tin - Test method Plastics piping systems - Plastic components - Determination of dimensions Unplasticized polyvinyl chloride (PVC-U) pipes for water supply- Recommended practices for laying Rules for rounding off numerical values Specification for Unplasticized poly (vinyle chloride) pipes for water supply and for buried and above ground drainage and sewerage under pressure
SLS ISO 3114 SLS ISO 3126 ISO/TR 4191 SLS 102	Thermoplastics pipes and fittings - Vicat softening temperature, Part 2: Test conditions for unplasticized poly (vinyl chloride) (PVC-U) or chlorinated poly (vinyl chloride) (PVC-C) pipes and fittings and for resistance poly (vinyl chloride) (PVC-HI) pipes Unplasticized polyvinyl chloride (PVC) pipes for potable water supply - Extractability of lead and tin - Test method Plastics piping systems - Plastic components - Determination of dimensions Unplasticized polyvinyl chloride (PVC-U) pipes for water supply- Recommended practices for laying Rules for rounding off numerical values Specification for Unplasticized poly (vinyle chloride) pipes for water supply and for buried and above ground drainage and sewerage under

3 TERMS AND DEFINITIONS

For the purposes of this standard, definitions given in **SLS 147** and the followings shall apply:

3.1 design length of bends (Z_d -length) : Length of an outlet, excluding any socket length or insert length of spigot.

3.2 laying length

3.2.1 *socketed outlet* (Z-length) : Distance from the inserted tube or spigot end to the intersection point of the fitting/valve axis (fitting or valve centre)

3.2.2 *spigot outlet*(Z-length) : Distance from the outlet end to the intersection point of the fitting/valve axis (fitting or valve centre)

3.2.3 *socket with parallel outlets* (Z-length) : Distance between the ends of the inserted tubes or spigots.

3.2.4 *one socket and one spigot with parallel outlet*s(Z-length) : Distance from the inserted tube or spigot end to the end of the spigot outlet.

3.3 Symbols

- Z Laying length (Z-length)
- Z_d Z design length (Z_d-length)
- r Bend radius

4 CLASSIFICATION OF PIPE FITTINGS

4.1 Classification

Fittings shall be classified according to their nominal pressure, PN and the series S of the connecting pipe for which the fitting is designed.

The allowable operating pressure PFA, for temperatures up to and including 25 0 C shall be equal to the nominal pressure, PN.

To determine the allowable operating pressure (PFA) for temperatures between 25 0 C and 45 0 C, a supplementary de-rating factor, f_{T} , shall be applied to the nominal pressure, PN as Clause **4.1** of **SLS 147:2013**. In this standard, maximum allowable operating pressure at 30 0 C is expressed as PN_T.

If the fitting is made from pipe, the mechanical and physical characteristics of the pipe shall conform to **SLS 147**. The PN rating of fabricated fitting shall be derived from the PN_T of the pipes used. The manufacturer of fabricated fittings shall be responsible for the design and the pressure rating of the fittings.

5 **REQUIREMENTS**

5.1 Material

The fitting material used shall conform to Clauses 5.1.1 and 5.1.2 of SLS 147:2013.

5.1.1 Density

The density, ρ , of the fitting material, at 23 ⁰C when measured in accordance with **7.1**, shall be within the following limits:

 $1\ 350\ \text{kg/m}^3 \le \tilde{\rho} \le 1\ 460\ \text{kg/m}^3$

5.1.2 MRS-value

The fitting material shall have a minimum required strength, MRS of at least 25 MPa.

NOTE: The manufacturer of the compound or formulation shall confirm the MRS value by testing in accordance with **ISO 1452-1**.

5.1.3 Effect of materials on water quality

The fitting material shall not adversely affect the quality of the drinking water and shall conform to Clause **5.1.5** of **SLS 147:2013**.

5.2 General characteristics

5.2.1 Appearance

When viewed without magnification the internal and external surfaces of fittings shall be smooth, clean and free from scoring, cavities and other surface defects to an extent that would prevent conformity to this standard. Each end of a fitting shall be square to its axis.

5.2.2 *Colour*

The colour of injection-moulded fittings shall be grey throughout the wall for water supply, and grey or brown for drainage and sewerage pipes under pressure. The colour of fittings made from pipes shall be grey or blue for water supply, and grey or brown for drainage and sewerage pipes under pressure.

5.2.3 Opacity of fittings intended for the above-ground conveyance of water

The wall of fittings shall be opaque and shall not transmit more than 0.2 per cent of visible light when measured in accordance with **7.2**.

5.3 Geometrical characteristics

Dimensions shall be measured in accordance with 7.3.

5.3.1 Nominal diameters

The nominal inside diameter(s), d_n , of a fitting shall correspond to, and be designated by, the nominal outside diameter(s) of the pipe(s) for which the fitting is designed.

5.3.2 *Fittings for solvent cementing*

5.3.2.1 Socket and spigot dimensions

The socket dimensions of the fittings shall be the same as for sockets on pipes and shall conform to **SLS 147.**

The spigot length(s) shall be at least equal to the corresponding socket length(s).

The tolerance on the diameter of the spigot ends, d_{2} , reducing bushes (see Table 6 and Table 7) shall always be positive and be as follows:

- maximum 0.2 mm for diameters equal to or less than 90 mm;
- maximum 0.3 mm for diameters 110 mm to 160 mm;
- maximum 0.4 mm or diameters 180 mm to 225 mm; and
- maximum 0.5 mm for diameters 250 mm to 315 mm.

5.3.2.2 Diameters, laying lengths, bend radii and angles

For the following types of injection-moulded fittings, the Z-lengths shall be calculated using one of the equations (a), (b), (c), (d), (e), (f), (g) or (h) as applicable, where α is the angle of the elbow and *r* is the radius of the bend.

a) 90⁰ elbows, 90⁰ tees (see Table 1)
$$Z = \frac{d_n}{2} + 1$$

b) 45⁰ elbows (see Table 1) $Z = \frac{d_n}{2} \tan \frac{\alpha}{2} + 1$
c) 45⁰ tee (see Table 1) $Z = \frac{d_n}{2} \cot \frac{\alpha}{2} + t$

with $d_n \le 90$ mm, 110 mm, 125 mm, 140 mm, 160 mm and t=3 mm, 4 mm, 6 mm, 6 mm and 7 mm

$$Z_1 = \frac{d_n}{2} \tan \frac{\alpha}{2} + 1$$

d) bends (see Table 2) $Z = r = 2 d_n$ e) short bends (see Table 5) $Z = r = 0.75d_n$ f) reducing bushes, long (see Table 6) $Z = 0.75d_2 + 6$ g) reducing bushes, short (see Table 7) $Z = [\frac{d_2}{2} + 6] - [\frac{d_1}{2} + 6]$

The calculated values are given in Table 1 to Table 7. The calculated values may be adapted by the manufacturer.

The manufacturer shall state the exact values(s) of the Z-length(s) in their catalogues or any other technical documents.

The deviation from the calculated values are recommended to be not greater than the values given in Table 1, Table 2, Table 5, Table 6 and Table 7 as applicable

For bends made from pipe, the z-design lengths, z_d , and the bend radii shall be equal to or greater than the values given in Table **3** and Table **4** as applicable.

NOTE : *The Z-lengths are always greater than the corresponding socket lengths.*

The followings are figures and tables for fittings for solvent cementing.

The types of fittings are shown in Figure 1.

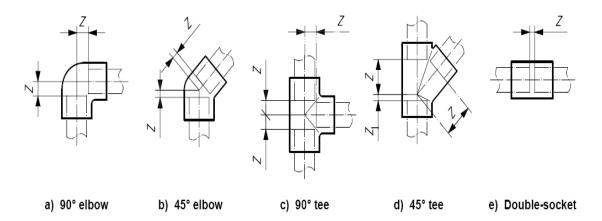


FIGURE 1 – Types of fittings: Typical elbows, tees and double-socket

double sockets											
Nominal		Calculated Z									
diameter	90 ⁰ elbow	45 ⁰ elbow	90 ⁰ tee	45 ⁰	tee	Double					
$\mathbf{d}_{\mathbf{n}}$						socket					
	Z	Z	Z	Z	\mathbf{Z}_1	Z					
20	11±1	5±1	11±1	27±3	6^{+2}_{-1}	3±1					
25	$13.5^{+1.2}_{-1}$	$6^{+1.2}_{-1}$	$13.5^{+1.2}_{-1}$	33±3	7^{+2}_{-1}	$3^{+1.2}_{-1}$					
32	$17^{+1.6}_{-1}$	$7.5^{+1.6}_{-1}$	$17^{+1.6}_{-1}$	42^{+4}_{-3}	8^{+2}_{-1}	$3^{+1.6}_{-1}$					
40	21^{+2}_{-1}	9.5^{+2}_{-1}	21^{+2}_{-1}	51^{+5}_{-3}	10^{+2}_{-1}	3^{+2}_{-1}					
50	$26^{+2.5}_{-1}$	$11.5^{+2.5}_{-1}$	$26^{+2.5}_{-1}$	63^{+6}_{-3}	12^{+2}_{-1}	3^{+2}_{-1}					
63	$32.5_{-1}^{+3.2}$	$14_{-1}^{+3.2}$	$32.5_{-1}^{+3.2}$	79_{-3}^{+7}	14^{+2}_{-1}	3^{+2}_{-1}					
75	38.5^{+4}_{-1}	16.5^{+4}_{-1}	38.5^{+4}_{-1}	94^{+9}_{-3}	17^{+2}_{-1}	4^{+2}_{-1}					
90	46^{+5}_{-1}	19.5^{+5}_{-1}	46^{+5}_{-1}	112^{+11}_{-3}	20^{+3}_{-1}	5^{+2}_{-1}					
110	56^{+6}_{-1}	24^{+6}_{-1}	56^{+6}_{-1}	137^{+13}_{-4}	24^{+3}_{-1}	6^{+3}_{-1}					
125	63.5^{+6}_{-1}	$\frac{27^{+6}_{-1}}{30^{+7}_{-1}}$	63.5^{+6}_{-1}	157^{+15}_{-4}	27^{+3}_{-1}	6^{+3}_{-1}					
140	71^{+7}_{-1}	30^{+7}_{-1}	71^{+7}_{-1}	175_{-5}^{+17}	30^{+4}_{-1}	8^{+3}_{-1}					
160	81^{+8}_{-1}	34_{-1}^{+8}	81^{+8}_{-1}	200^{+20}_{-6}	35^{+4}_{-1}	8^{+4}_{-1}					
180	91^{+8}_{-1}	39_{-1}^{+8}	91^{+8}_{-1}	-	-	8^{+4}_{-1}					
200	101^{+9}_{-1}	43^{+9}_{-1}	101^{+9}_{-1}	-	-	8^{+5}_{-1}					
225	114^{+10}_{-1}	48^{+10}_{-1}	114^{+10}_{-1}			10^{+5}_{-1}					
250	-	53^{+10}_{-1}	126^{+10}_{-1}	-	-	12^{+5}_{-2}					
280	-	59^{+10}_{-1}	141_{-1}^{+10}	-	-	12^{+5}_{-2}					
315	-	63^{+10}_{-1}	159^{+10}_{-1}	-	-	14^{+5}_{-2}					
	Figure 1	•	•	•		•					
b) For	r reducing tees	, the z- length	of the barrel	shall be used	l for the bran	ıch as well.					

TABLE 1 – Calculated Z-lengths and recommended deviations for elbows, tees and
double sockets

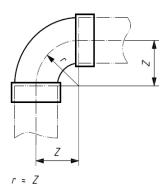


FIGURE 2 – Bends, injection -moulded

TABLE 2 – Calculated Z-lengths and recommended deviations for bends, injection-
moulded

	Dimensions in millimetres
Nominal	Calculated Z-lengths and
diameter, d _n	recommended deviations
20	40 ± 1
25	$50^{+1.2}_{-1}$
32	$64^{+1.6}_{-1}$
40	80^{+2}_{-1}
50	$100^{+1.6}_{-1}$
63	$126^{+3.2}_{-1}$
75	150^{+4}_{-1}
90	180^{+5}_{-1}
110	220_{-1}^{+6}
125	250^{+6}_{-1}
140	280^{+7}_{-1}
160	320^{+8}_{-1}
See Figure 2	

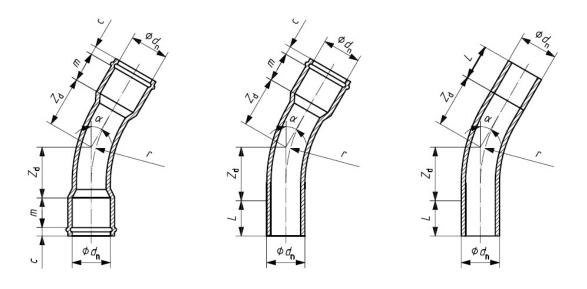


FIGURE 3 – Bends made from pipes

TABLE 3 – Calculated minimum bend radii and minimum design lengths for bends
made from pipes
Dimensions in millimetres

	<u>, , , , , , , , , , , , , , , , , , , </u>					mensions in r	minimetres					
Nominal	Minimum	0 0										
diameter	Bend radius		Z _d , min									
dn	r _{min} ^b		Angle, α									
		11 ⁰	22^{0}	30⁰	45 ⁰	60 ⁰	90 ⁰					
63	221	46	68	84	117	153	246					
75	263	55	81	100	139	182	293					
90	315	66	97	120	166	218	351					
110	385	81	119	147	203	266	429					
125	438	92	135	167	231	303	488					
140	490	103	151	187	259	339	546					
160	560	118	173	214	296	387	624					
180	630	133	194	241	333	436	702					
200	700	147	216	268	370	484	780					
225	788	166	243	301	416	545	878					
250	875	184	270	334	462	605	975					
280	980	206	302	375	518	678	1092					
315	1 103	232	340	421	583	763	1229					
355	1 243	262	384	475	656	859	1385					
400	1 400	295	432	535	740	968	1560					
450	1 575	332	486	602	832	1089	1755					
500	1 750	369	540	669	925	1210	1950					
See Figure 3												
	calculated using, Z_d culated using, $r_{min} =$		$x \tan \alpha + (\alpha + \alpha)$	0.4 d _n								

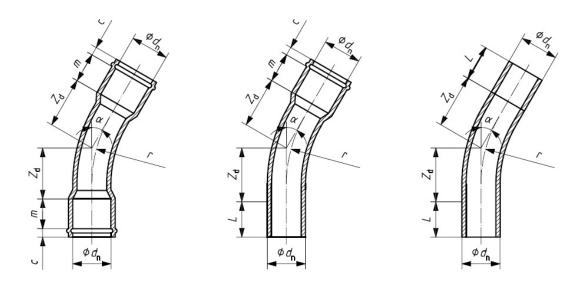


FIGURE 4 – Short bends made from pipes

TABLE 4 – Calculated minimum bend radii and minimum design lengths for short
bends made from pipes
Dimensions in millimetres

	r r					nensions in m	illimetres				
Nominal	Minimum Minimum design length ^a										
diameter	bend radius	$\mathbf{Z}_{\mathbf{d}}$, min									
$\mathbf{d_n}$	r _{min} b		Angle, α								
		11^{0}	22 ⁰	30 ⁰	45 [°]	60 ⁰	90 ⁰				
63	157	31	46	58	81	107	173				
75	187	37	55	69	96	127	206				
90	225	44	66	83	116	152	248				
110	275	54	81	101	141	186	303				
125	312	61	92	115	161	212	344				
140	350	69	103	129	180	237	385				
160	400	79	118	147	206	271	440				
180	450	88	133	166	231	305	495				
200	500	98	147	184	257	339	550				
225	562	110	166	207	289	381	619				
250	625	123	184	230	321	423	688				
280	700	137	206	258	360	474	770				
315	787	155	232	290	405	533	866				
355	887	174	261	327	456	601	976				
400	1 000	196	294	368	514	677	1 100				
450	1 125	221	331	414	578	762	1 238				
500	1 250	245	368	460	643	847	1 375				
See Figure 4			·	·			• 				
a) $\overline{Z_{d, \min}}$ is	calculated using, Z _d	$_{\rm min} = (2.5 \ \rm d_r)$	$a x \overline{\tan \alpha} + 2$	$0.25 d_n$							

b) r_{min} is calculated using, $r_{min} = 2.5 d_n$

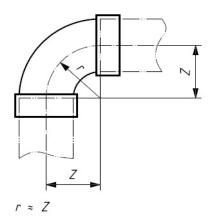
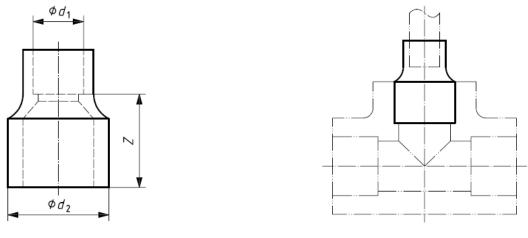
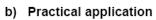



FIGURE 5 – Short bends, injection moulded


TABLE 5 – Calculated Z – lengths and recommended deviations for short bends,
injection-moulded

Dimensions in millimetres											
Nominal diameter, d _n	140	160	180	200	225	250	280	315			
Calculated laying length,	105^{+8}_{-1}	120^{+8}_{-1}	135^{+8}_{-1}	150^{+9}_{-1}	168^{+9}_{-1}	187^{+9}_{-1}	210^{+10}_{-1}	236^{+10}_{-1}			
Z, and recommended											
deviations											
See Figure 5											

a) Reducing bush, long

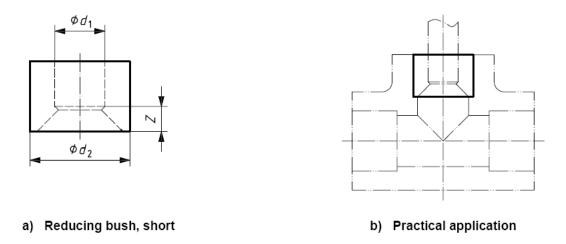

_

FIGURE 6 – Reducing bushes, long and example of application

					0		U		Dimen	isions ii	ı millin	netres
Nominal	Nominal diameter of spigot											
socket	\mathbf{d}_2											
diameter	20	25	32	40	50	63	75	90	110	125	140	160
			F	Recom	mend	ed de	viatio	ns for	z-leng	gth		
		±1			±	1.5				±2		
d ₁					Calc	ulated	l Z – l	ength	S			
20	-	25	30	36	44	-	-	-	-	-	-	-
25	-	-	30	36	44	54	-	-	-	-	-	-
32	-	-	-	36	44	54	62	-	-	-	-	-
40	-	-	-	-	44	54	62	74	-	-	-	-
50	-	-	-	-	-	54	62	74	88	-	-	-
63	-	-	-	-	-	-	62	74	88	100	-	-
75	-	-	-	-	-	-	-	74	88	100	111	-
90	-	-	-	-	-	-	-	-	88	100	111	126
110	-	-	-	-	-	-	-	-	-	100	111	126
125	-	-	-	-	-	-	-	-	-	-	111	126
140	-	-	-	-	-	-	-	-	-	-	-	126
See Figure 6												

TABLE 6 – Calculated Z – lengths and recommended deviations for
reducing bushes, long

FIGURE 7 – Reducing bushes, short and example of application

$\Gamma ABLE 7 - Calculated Z - lengths and recommended deviations for reducing bushes, she$	ort
Dimensions in millimetres	

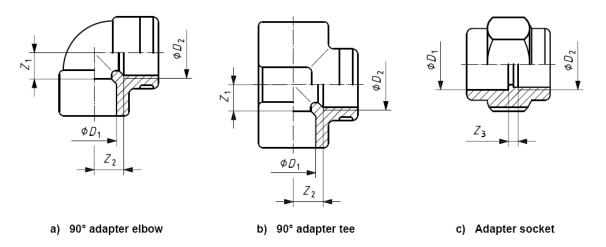
Nominal								Cal	lculate	d Z-l	ength	S						
Socket diameter		Nominal diameter of spigot, d ₂																
d ₁	20	25	32	40	50	63	75	90	110	125	140	160	180	200	225	250	280	315
20	-	2.5	6	10	15	-	-	-	-	-	-	-	-	-	-	-	-	-
25	-	-	3.5	7.5	12.5	19		-	-	-	-	-	-	-	-	-	-	-
32	-	-	-	4	9	15.5	21.5		-	-	-	-	-	-	-	-	-	-
40	-	-	-	-	5	11.5	17.5	25	-	-	-	-	-	-	-	-	-	-
50	-	-	-	-	-	6.5	12.5	20	30	-	-	-	-	-	-	-	-	-
63	-	-	-	-	-	-	6	13.5	23.5	31	-	-	-	-	-	-	-	-
75	-	-	-	-	-	-	-	7.5	17.5	25	32.5	-	-	-	-	-	-	-
90	-	-	-	-	-	-	-	-	10	17.5	25	35	-	-	-	-	-	-
110	-	-	-	-	-	-	-	-	-	75	15	25	35	-	-	-	-	-
125	-	-	-	-	-	-	-	-	-	-	7.5	17.5	27.5	37.5	-	-	-	-
140	-	-	-	-	-	-	-	-	-	-	-	10	20	30	42.5	-	-	-
160	-	-	-	-	-	-	-	-	-	-	-	-	10	20	32.5	45	-	-
180	-	-	-	-	-	-	-	-	-	-	-	-	-	10	22.5	35	50	-
200	-	-	-	-	-	-	-	-	-	-	-	-	-	-	12.5	25	40	57.5
225	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	12.5	27.5	45
250	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	15	32.5
280	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	17.5
	e Figui le recoi		led de	viations	are ± 1	l mm												

5.3.3 Adapter fittings

5.3.3.1 Designation of adapter fittings

Adapter fittings are designated by

- a) the nominal inside diameter of the fitting socket or the nominal outside diameter of the fitting spigot according to **SLS 147**.
- b) the nominal size of the threaded part in accordance with **ISO 7-1**.


5.3.3.2 Reinforcement of adapter fittings

Adapter fittings with female threaded sockets for jointing to threaded metal pipes or fittings shall be strengthened/reinforced at the threaded outlets by any suitable method to prevent splitting of the threaded portion during assembly.

5.3.3.3 Dimensions of adapter fittings

The dimensions of plain sockets and/or spigots of the adapter fittings shall conform to **SLS 147**. The threaded parts of the fitting shall conform to **ISO 7-1**. The calculated values of the Z-length(s) are given in Table **8** and Table **9**.

The manufacturer shall state the exact value(s) of the Z-length(s) in their catalogues or any other technical documents.

FIGURE 8 – Typical adapter fittings – Equal

		• 0	Dimen	sions in millimetres				
Diameter	Size of	Laying length						
of socket	thread	Z						
$\mathbf{D_1}^{\mathbf{a}}$	$\mathbf{D}_2^{\mathbf{b}}$	Z_1^{c}	\mathbb{Z}_2^{d}	Z_3^{e}				
20	R 1/2"	11	14	5				
25	R 3⁄4"	13.5	17	5				
32	R 1"	17	22	5				
40	R 1¼"	21	28	5				
50	R 11/2"	26	38	7				
63	R 2"	32.5	47	7				
See Figure 8			•					
a) Tolerances of diar	neters and length of soc	kets in accordance wit	th SLS 147.					
	of pipe thread in accorda							
c) Laying length Z ₁ a	and tolerances in accord	lance with Table 1 (90 ⁶	⁰ elbow).					
d) Tolerances of layi	ng Z_2 equal to $Z_{1.}$							
e) Tolerances of layi	ng length Z ₃ in accorda	nce with Table 1 (sock	et).					

TABLE 8 – Calculated Z-lengths and recommended deviations for adapter fittings – Equal

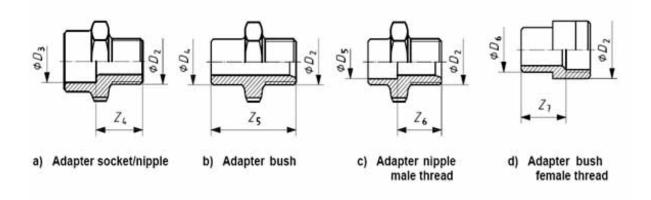


FIGURE 9 – Typical adapter fittings – Nipples and bushes

TABLE 9 – Calculated Z-lengths and recommended derivations for adapter fittings –
Nipples and bushes

						Dimens	ions in milli	netres
Adapter		apter Adapter bush			r nipple	Adapte	Size of	
socket	socket/nipple			/male	thread	/female	thread	thread
D_3^{a}	Z_4^{b}	D_4^{c}	Z ₅ ^b	D_5^{a}		D ₆ ^c	Z ₇ ^b	$\mathbf{D}_2^{\mathbf{d}}$
20	23	20	42	16	22	25	27	R 1⁄2"
25	25	25	47	20	22	32	32	R 3⁄4"
32	28	32	54	25	27	40	38	R 1"
40	31	40	60	32	29	50	46	R 1¼"
50	32	50	66	40	29	63	57	R 11/2"
63	38	63	78	50	34	-	-	R 2"
See Figure 9								
a) Tolerances of diameters and length of sockets in accordance with SLS 147.								
b) Tolerances of laying length Z_4 , Z_5 , Z_6 and Z_7 in accordance with Table 1 (90 ⁰ elbow).								
	ces of diame							

d) Sizes and length of pipe thread in accordance with **ISO 7-1**.

5.3.4 Tapping saddles

Tapping saddles, with or without a shut-off device, shall be fixed onto the water supply mains by solvent cementing or mechanical fixing with elastomeric sealing. Typical tapping saddles are shown in Figures 10, 11, 12 and 14. Their dimensions shall conform to Table 10.

NOTE: *Other designs are allowed subject to the agreement between the manufacturer and the purchaser.*

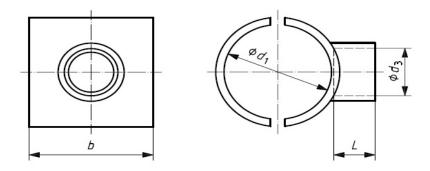


FIGURE10 - Typical socket saddle with solvent cement type socket

FIGURE 11 - Typical tee saddle with parallel, solvent cement type socket

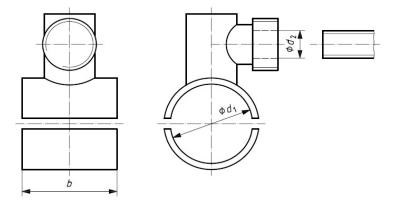


FIGURE 12 - Typical tee saddles with right-angled, mechanical joint

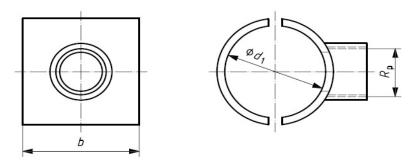


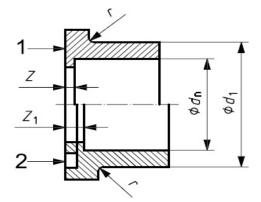
FIGURE 13 - Typical socket saddle with internally threaded socket

The length of the saddle, b, shall be specified by the manufacturer in their catalogues or any other technical documents.

Water suppl	ly mains		Dimensions in millimetres Outlet connection					
Nominal outside diameter of pipe	Inside diameter of saddle	Nominal outside diameter of connecting pipe	Solvent cementing socket mean inside diameter ^a	Solvent cementing length	Internal pipe thread ^b			
$\mathbf{d}_{\mathbf{n}}$	\mathbf{d}_1	d ₂	d ₃	L	R _p			
32	32	20	20	16	1/2			
		25	25	19	3⁄4			
		20	20	16	1/2			
40	40	25	25	19	3⁄4			
		32	32	22	1			
		20	20	16	1/2			
50	50	25	25	19	3⁄4			
		32	32	22	1			
		20	20	16	1/2			
63	63	25	25	19	3⁄4			
		32	32	22	1			
		40	40	26	11⁄4			
		50	50	31	11/2			
		20	20	16	1/2			
75	75	25	25	19	3⁄4			
		32	32	22	1			
		40	40	26	11⁄4			
		50	50	31	11/2			
		20	20	16	1/2			
90	90	25	25	19	3⁄4			
		32	32	22	1			
		40	40	26	11⁄4			
		50	50	31	11/2			
		20	20	16	1/2			
		25	25	19	3⁄4			
110	110	32	32	22	1			
		40	40	26	11⁄4			
		50	50	31	11/2			
		63	63	38	2			
		32	32	22	1			
125	125	50	50	31	11/2			
		63	63	38	2			

 TABLE 10 – Tapping saddle dimensions (continued)

Water suppl		Outlet connection					
Nominal outside	Inside	Nominal outside	Solvent cementing	Solvent	Internal		
diameter of pipe	diameter of	diameter of	socket mean inside	cementing	pipe		
	saddle	connecting pipe	diameter ^a	length	thread ^b		
$\mathbf{d}_{\mathbf{n}}$	d ₁	\mathbf{d}_2	d ₃	Ĺ	R _p		
		25	25	19	3⁄4		
140	140	32	32	22	1		
		50	50	31	11/2		
		63	63	38	2		
		20	20	16	1⁄2		
160	160	25	25	19	3⁄4		
		32	32	22	1		
		40	40	26	11⁄4		
		50	50	31	11/2		
		63	63	38	2		
		20	20	16	1⁄2		
		25	25	19	3⁄4		
200	200	32	32	22	1		
		40	40	26	11⁄4		
		50	50	31	11/2		
		63	63	38	2 3		
		90	90	51			
		32	32	22	1		
		40	40	26	11⁄4		
225	225	50	50	31	11/2		
		63	63	38	2 3		
		90	90	51			
		20	20	16	1/2		
		25	25	19	3⁄4		
250	250	32	32	22	1		
		40	40	26	11⁄4		
		50	50	31	11/2		
		20	20	16	1⁄2		
		25	25	19	3⁄4		
315	315	32	32	22	1		
		40	40	26	11⁄4		
		50	50	31	11/2		
See Figures 10 to 13							
a) For diameters d_3	the tolerance is	$^{+0.3}_{0}$ mm					
b) Jointing pipe three	and D shall cor						


 TABLE 10 – Tapping saddle dimensions (Concluded)

5.3.5 Flange adapters and flanges

5.3.5.1 Adapters for backing flange

Adapters for PN_T 9 (PN 10) and PN_T 14 (PN 16) flanges shall conform to the dimensions given in Table 11, where the dimensions d_1 , z, z_1 and r are as indicated in Figure 14.

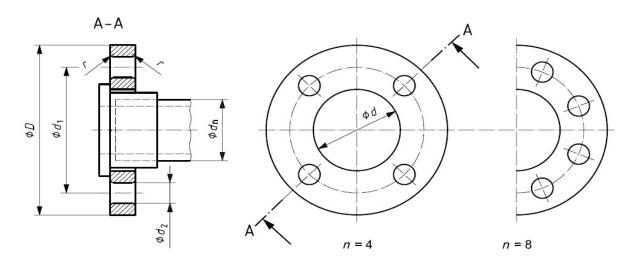
NOTE : These dimensions have been chosen to ensure practical inter-changeability.

Key

- 1 Joining face for flask gasket
- 2 Joining face with O-ring groove

FIGURE 14 – Dimensions of adapters for backing flanges

TABLE 11 – Dimensions of adapters for Pl	N _T 9 and PN _T 14 flanges
	Dimensions in millimetres


				Dimensions	in millimetres				
	Adapters								
Nominal	External	Contour	Join	ing face	Nominal				
diameter of	diameter	radius			size of				
socket ^a					flange				
$\mathbf{d}_{\mathbf{n}}$	d ₁	r _{max}	flat	with groove	DN				
			Z	z ₁					
20	27 ± 0.15	1	3	6	15				
25	33 ± 0.15	1.5	3	6	20				
32	41 ± 0.2	1.5	3	6	25				
40	50 ± 0.2	2	3	8	32				
50	61 ± 0.2	2	3	8	40				
63	76 ± 0.3	2.5	3	8	50				
75	90 ± 0.3	2.5	3	8	65				
90	108 ± 0.3	3	5	10	80				
110	131 ± 0.3	3	5	11	100				
125	148 ± 0.4	3	5	11	125				
140	165 ± 0.4	4	5	11	125				
160	188 ± 0.4	4	5	11	150				
See Figure 14									
a) Socket dimensions									

5.3.5.2 Flanges

The maximum allowable operating pressure, PN_T , of a flange shall be not less than the PN_T of the connecting pipe.

The flange dimensions shown in Figure 15 shall conform to the requirements in Table 12 for PN_T 9 and PN_T 14.

NOTE: The thickness of the flange depends on the PN_T and on the strength of the material used.

Key

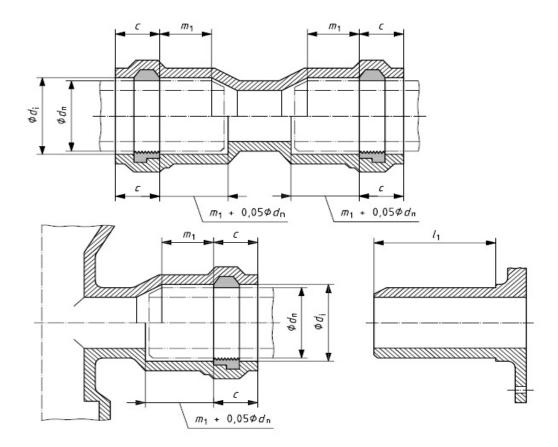
- D outside diameter of flange
- d inside diameter of flange
- d₁ pitch circle diameter of bolt holes
- d_2 diameter of a bolt hole
- d_n nominal outside diameter of pipe
- n number of bolt holes
- r radius

FIGURE 15 – Dimensions of flanges

				•	Di	mensions	in millimetr	es						
Nominal	Nominal	Outside	Inside	Pitch	Radius	Number	Diameter	Metric						
outside	size of	diameter	diameter	circle		of bolt	of bolt	thread						
diameter of	flange	of	of	diameter		holes	holes	of bolt						
corresponding		flange ^a	flange ^a	of bolt										
pipe, d _n	DN	D	d	holes, d ₁	r	n	\mathbf{d}_2							
20	15	95	28	65	1	4	14	M12						
25	20	105	34	75	1.5	4	14	M12						
32	25	115	42	85	1.5	4	14	M12						
40	32	140	51	100	2	4	18	M16						
50	40	150	62	110	2	4	18	M16						
63	50	165	78	125	2.5	4	18	M16						
75	65	185	92	145	2.5	4	18	M16						
90	80	200	110	160	3	8	18	M16						
110	100	220	133	180	3	8	18	M16						
125	125	250	150	210	4	8	18	M16						
140	125	250	167	210	4	8	18	M16						
160	150	285	190	240	4	8	22	M20						
See Figure 15					·			·						
a) Tolerance on d –	0.5 for $d \le 62$	2 and -1 for d	1 > 62, where	d matches with	h the diame	ter of the fla	a) Tolerance on d – 0.5 for d \leq 62 and – 1 for d > 62, where <i>d</i> matches with the diameter of the flange adapter							

TABLE 12 – Dimensions of PN_T 9 and PN_T 14 flanges

5.3.6 Elastomeric ring seal fittings


5.3.6.1 Socket and spigot dimensions

The socket inside diameter, d_i , the tolerance for out-of-roundness, the length of socket entrance and sealing area, c, and the chamfer of the fitting spigot shall conform to the same requirements as for sockets for elastomeric ring seal jointing of pipes given in **SLS 147**.

Elastomeric ring seal fittings made from materials other than PVC-U shall conform to the same geometric requirements.

5.3.6.2 Minimum depth of engagement for socketed fittings and length of fitting spigots.

Figure 16 shows the engagement when the male end is pushed to the socket bottom.

NOTE: For assembly instructions see ISO/TR 4191

FIGURE 16 - Engagement of sockets and spigots

The minimum value for the depth of engagement, $m_{1, \min}$ of double-sockets shall conform to Table 13. The minimum value for the depth of engagement m_{\min} of socketed fittings (other than double-sockets) shall be the same as for sockets for elastomeric ring seal joints of pipes and shall conform to SLS 147.

The manufacturer's information (e.g. catalogues) shall state the actual length of fitting spigots, l_{1} , based on the following:

$$L_1 > m_1 + c + 0.05 d_n$$

where the minimum values for m_1 are given in Table 13 and c conforms to SLS 147.

NOTE : The minimum length of fitting spigots, l_{min} is given in Table 13 for guidance.

		Dimensions in millimetres
Nominal inside diameter of	Minimum depth of	Minimum length of fitting
socket	engagement ^a	spigot ^b
$\mathbf{d_n}$	$m_{1,\min}$	$l_{1,\min}$
32	32	84
40	33	85
50	33	89
63	34	93
75	35	98
90	35	102
110	36	110
125	37	114
140	38	119
160	39	127
180	40	133
200	41	139
225	42	147
250	44	156
280	45	166
315	48	176
355	50	187
400	52	198
450	55	212
500	57	224
See Figure 16		
a) $m_{1,\min}$ is calculated using m_{1}	$min = 30 \text{ mm} + 0.15 d_n - 2$	$2e_n$, where e_n is the nominal wal
hickness of the corresponding pip	es of series S 10.	
b) l_{\min} is calculated using $l_{\min} =$	$m_{\min} + c + 0.05 d_{n}$, where	$m_{\rm min}$ and c are given in SLS 147.

TABLE 13 – Minimum depth of engagement for double-sockets and minimum length of fitting spigots

5.3.6.3 Diameters, laying lengths, design lengths, bend radii and angles

The relevant dimensions are shown in Figures 3, 4, 17, 18, 19, 20, 21 and 22 as applicable.

The laying lengths (Z-lengths) shall be equal to or greater than the applicable minimum values given in Tables 14, 15, 16 and 17, and Table 19 for injection moulded fittings and for fittings made from pipe.

The manufacturer's information (eg. catalogue) shall state the actual z-lengths. For bends made from pipe and for spigot fittings, the z_d (Z-design lengths) and the bend radii shall be equal to or greater than the applicable values given in Table **3** and Table **4**.

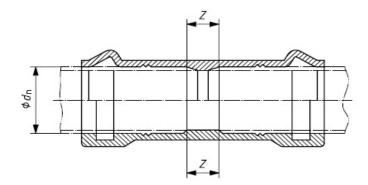
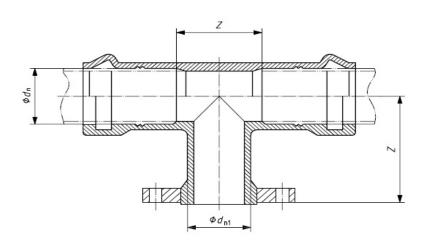


FIGURE 17 – Double-sockets

		Dimension	s in millimetres
Nominal diameter	Minimum	Nominal diameter	Minimum
of socket, d _n	Z-length	of socket, d _n	Z-length
32	2	200	6
40	2	225	7
50	2 2 2	250	8
63	2	280	8
75	3	315	8
90	33	355	8
110	4	400	8
125	4	450	8
140	5	500	8
160	5 5	560	8
180	5	630	8
See Figure 17			
NOTE: sockets central intended to be purposes.			Double- without register are used for repair

TABLE 14 – Z- lengths for double-sockets

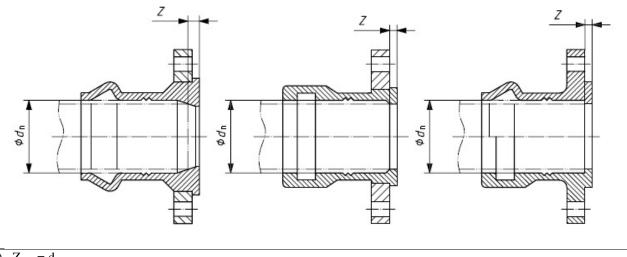

FIGURE 18 – Typical tee with sockets, injection-moulded

Ød_{n1}

Nominal diameters Minimum laying lengths Nominal diameters Minimum laying lengths								
	1	•					laying lengths	
$\mathbf{d}_{\mathbf{n}}$	d _{n1}	Z _{min}	$\mathbf{Z}_{1 \cdot \min}^{\mathbf{b}}$	d _n	d _{n1}	Z. _{min} ^a	$Z_{1 \cdot \min}^{b}$	
63	63	63	32		63	63	80	
75	63	63	38		75	75	80	
	75	75	38		90	90	80	
	63	63	45	160	110	110	80	
90	75	75	45		125	125	80	
	90	90	45		140	140	80	
	63	63	55		160	160	80	
	75	75	55		90	90	100	
110	90	90	55		110	110	100	
	110	110	55		125	125	100	
	63	63	63	200	140	140	100	
	75	75	63		160	160	100	
125	90	90	63		200	200	100	
	110	110	63		63	63	113	
	125	125	63		75	75	113	
	63	63	70		90	90	113	
	75	75	70		110	110	113	
140	90	90	70		125	125	113	
	110	110	70	225	140	140	113	
	125	125	70		160	160	113	
	140	140	70		200	200	113	
					225	225	113	
See Figure 1		•				-		
a) $Z_{\min} = d$	n1							

TABLE 15 – Calculated minimum laying lengths for injection-moulded tees with sockets (equal and with branch reduced) Dimensions in millimetres

b) $Z_{min} = 0.5d_n$ rounded to the next greater millimetre.

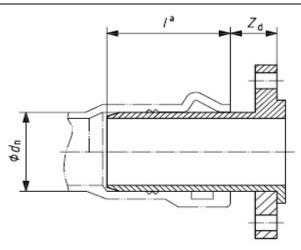


NOTE : For flange dimensions, see Table 12, for collar dimensions, see Table 11.

FIGURE 19 - Typical tee with sockets and flanged branch, injection-moulded

Nominal di	nal diameters Minimum laying lengths		Nominal of	diameters	Minimum laying lengths		
$\mathbf{d}_{\mathbf{n}}$	$\mathbf{d}_{\mathbf{n}1}$	\mathbf{Z}_{\min}	$Z_{1 \cdot min}^{b}$	dn	$\mathbf{d}_{\mathbf{n}1}$	Z.min ^a	$Z_{1 \cdot min}^{b}$
63	63	63	130		63	63	190
75	63	63	140		75	75	190
	75	75	140		90	90	200
	63	63	150	160	110	110	210
90	75	75	150		125	125	210
	90	90	150		140	140	210
	63	63	160		160	160	230
	75	75	160		90	90	225
110	90	90	170		110	110	235
	110	110	180		125	125	235
	63	63	170		140	140	235
	75	75	170	200	160	160	255
125	90	90	180		200	200	265
	110	110	190		63	63	230
	125	125	190		75	75	230
	63	63	180	225	90	90	240
	75	75	180		110	110	250
140	90	90	190		125	125	250
	110	110	200		140	140	250
	125	125	200		160	160	270
	140	140	200		(200)	200	280
					225	225	280
See Figure 1)						

TABLE 16 - Calculated minimum laying lengths for injection-moulded tees with sockets and flanged branch (equal and with branch reduced) Dimensions in millimetres


a) $Z_{\min} = d_{n1}$

NOTE : For flange dimensions, see Table 12, for collar dimensions, see Table 11.

FIGURE 20 – Typical flanged sockets, injection-moulded

					Dimens	sions i		mettes	5
Nominal diameter of the socket, d _n	63	75	90	110	125	140	160	200	225
Minimum laying length \mathbf{Z}_{min}	3	3	5	5	5	5	5	6	6
See Figure 20									

TABLE 17 – Calculated minimum laying lengths for injection-moulded flanged sockets Dimensions in millimetres

a - l_{min} conforms to Table 13.

NOTE: For flange dimensions, see Table 12, for collar dimensions, see Table 11.

FIGURE 21 - Typical flanged spigot, injection – moulded

TABLE 18 - Calculated minimum Z_d lengths for injection-moulded flanged spigots

		C	Ŭ	Dir	nensior	ns in n	nillimet	res	
Nominal diameter of the socket d_n	63	75	90	110	125	140	160	200	225
Minimum design length Z _{d min} ^a	33	34	35	37	39	40	42	46	49
See Figure 21									
a) $Z_{d \min} = 0.1 d_n + 26 \text{mm}$									

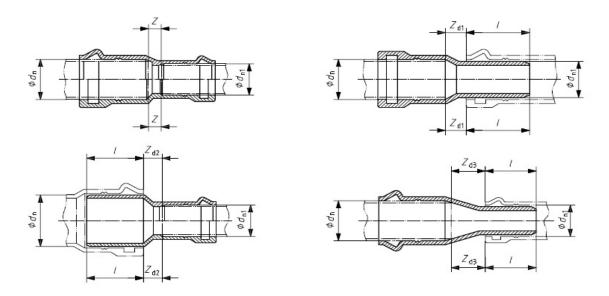


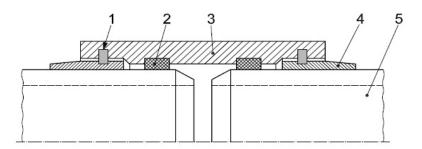
FIGURE 22 - Typical reducers

			D	imensions in mi	mneures
Nominal	diameters	Mi	nimum laying a	and design leng	ths
d _n	d _{n1}	\mathbf{Z}_{\min}	${ m Z}_{ m d1,min}$	Z _{d2,min}	Z _{d3,min}
75	63	3	6	6	34
90	63	4	14	14	62
	75	4	8	8	41
110	75	5	18	18	79
	90	5	10	10	53
125	90	5	18	18	81
	110	5	8	8	47
	90	7	25	25	109
140	110	7	15	15	76
	125	7	8	8	50
	110	7	25	25	113
160	125	7	18	18	88
	140	7	10	10	62
200	140	10	30	30	137
	160	10	20	20	103
225	160	10	33	33	150
	200	10	13	13	81
See Figure 22					
a) For 1_{\min} see T	able 13.				

 TABLE 19 – Minimum laying and design lengths for reducers

 Dimensions in millimetres

5.3.6.4 Wall thickness


The minimum wall thickness of the sockets and spigots at any point, except the sealing ring groove, shall be not less than the minimum wall thickness specified for the connecting pipe in **SLS 147**.

A bend made from pipe shall have a wall thickness at the bent area not less than the minimum wall thickness specified for the corresponding pipe in **SLS 147**.

NOTE: If needed, the next pipe series with the smaller S-number can be used see also 4.1

5.3.7 End-load bearing double-sockets with elastomeric seals

End-load bearing double sockets is designed to join PVC-U pipes with outside diameters conforming to **SLS 147** when longitudinal forces on the double sockets shall be expected. The end bearing double sockets are provided with elastomeric seals and a locking device (see Figure 23).

Key

- 1 locking device
- 2 sealing ring
- 3 PVC-U coupling
- 4 solvent cemented PVC-U sleeve
- 5 PVC-U pipe

FIGURE 23 – Example of an end-load-bearing double-socket

5.4 **Physical properties**

5.4.1 Vicat softening temperature

When tested in accordance with **7.4**, the minimum vicat softening temperature of fitting shall be 74 0 C.

5.4.2 *Effects of heating*

When tested in accordance with 7.5, the fitting shall not show any blisters or signs of weld line splitting¹.

No surface damage in the area of any injection point shall penetrate deeper than 50 per cent of the wall thickness at that point. Outside the area of any injection point no surface damage shall $occur^2$.

NOTES:

1)The weld-line is likely to become more pronounced, but this should not be taken as a sign of weld-line opening.

2) For sprue-gating, the area of injection point shall be calculated using a radius $R = 0.3d_n$ with a maximum value of 50 mm. For fittings moulded by end-gating techniques, eg: ring or diapharagm methods, the gating area shall be a cylindrical portion with a length of $L = 0.3d_n$ with a maximum value of 50 mm(see Figure 24). Any cracks or delamination in the wall of the fitting within to the injection area, parallel to the axis of the fitting, shall not penetrate in the axial direction more than 20 per cent of the length L defined in this note.

FIGURE 24 - Injection gating areas

5.5 Mechanical properties

5.5.1 Resistance to internal pressure of fittings or parts of fittings

When tested in accordance with **7.6**, there shall be no break on the fitting or parts of the fitting, during the specified test period therein.

5.5.2 Crushing test

Injection-moulded parts of fittings, on which hydrostatic pressure cannot be applied, shall be tested in accordance with **7.7**. The tested fitting parts shall not shatter when they undergo a deformation of 20 per cent.

6 MARKING

6.1 Marking on fittings

The following shall be marked legibly and indelibly on the fittings :

- a) Manufacturer's name or registered trade-mark;
- b) Material;
- c) Nominal diameter(s), d_n; and
- d) Maximum allowable pressure at 30 0 C, PN_T (eg: PN_T 14).

NOTE: The fittings of nominal diameter, $d_n \leq 50$ mm, nominal diameter and batch number may either be marked directly on the fitting or on a label attached to the fitting or on the packaging.

6.2 Marking on flanges

The following shall be marked legibly and indelibly on flanges :

- a) Manufacturer's name or registered trade-mark;
- b) Material;
- c) Nominal size, DN; and
- d) Maximum allowable pressure at 30 0 C of flange, PN_T (eg: PN_T 14).

NOTE: The flanges of nominal size, $DN \le 25$ mm, nominal diameter and batch number may either be marked directly on the flange or on a plate/label attached to the fitting or on the packaging.

7 METHODS OF TEST

7.1 Determination of material density

The density of the pipe material shall be determined in accordance with **SLS ISO 1183 - 1**. The test results shall be reported for each test specimen to the nearest 1 kgm^{-3} .

7.2 Determination of opacity

The opacity of the fitting shall be determined in accordance with SLS ISO 7686.

7.3 Determination of dimensions

Dimensions shall be measured in accordance with SLS ISO 3126.

All the dimensions shall be measured at $23 \pm 2 \ ^{0}C$

7.4 Determination of vicat softening temperature

The vicat softening temperature shall be determined in accordance with SLS ISO 2507-1 and SLS ISO 2507-2.

7.5 Determination of effects heating

The effects of heating shall be determined in accordance with Method A (air oven) of **SLS ISO 580.**

7.6 Hydrostatic pressure test

The hydrostatic pressure of the fitting shall be determined for water in water test condition, in accordance with **SLS ISO 1167-1** and **SLS ISO 1167-3**.

Туре	Nominal diameter, mm	Test pressure, bar	Test period h
(1)	(2)	(3)	(4)
Injection moulded	$d_n < 160$	4.2 X PN	1
fittings		3.2 X PN	1000
	$d_n \ge 160$	3.36 X PN	1
		2.56 X PN	1000
Fittings made	$d_n \leq 90$	4.2 X PN	1
from pipes	$d_n > 90$	3.36 X PN	1

TABLE 20 – Resistance of fittings or parts of fittings to internal pressure at 20 ^oC

NOTES:

1) The test pressure p, shall be determined by using the following equation;

Test pressure, $p = (Test \ stress) x PN$

where, the test stress shall be 42 MPa for 1 h and 32 MPa for 1000 h at 20 ^{0}C .

2) For factory production control and process control, test pressure at 30 ^oC for 1 h period could be as follows;

for injection moulded fittings $d_n < 160, 3.6 \times PN$ $d_n \ge 160, 2.88 \times PN$ for fittings made from pipes $d_n \le 90, 3.6 \times PN$ $d_n \ge 90, 2.88 \times PN$

7.7 Crushing test

Crushing test shall be carried in accordance with EN 802.

The period between manufacture and testing, t_1 , and the conditioning period, t_2 , shall be not less than 30 min. The closure speed of the press plates shall be (50 ± 5) mm/min.

APPENDIX A COMPLIANCE OF A LOT

The sampling scheme given in this Appendix should be applied where compliance of a lot to the requirements of this standard is to be assessed based on statistical sampling and inspection.

Where compliance with this standard is to be assured based on manufacturer's control systems coupled with type testing and check tests or any other procedure, appropriate schemes of sampling and inspection should be adopted.

A.1 SAMPLING

A.1.1 Lot

All fittings in a single consignment of the same type and size manufactured under essentially similar conditions shall constitute a lot.

A.1.2 Scale of sampling

A.1.2.1 Samples shall be tested from each lot separately for ascertaining conformity of the lot to the requirements of this standard.

A.1.2.2 The number of fittings to be taken from the lot shall depend on the size of the lot and shall be in accordance with Table **21**.

Number of fittings in the lot	Number of fittings to be selected
Up to 500	14
501 to 1200	20
1201 and above	32

TABLE 21 – Scale of sampling

A.1.2.3 The fittings shall be selected at random. In order to ensure randomness of selection, random number tables as given in **SLS 428** shall be used.

A.1.3 Number of tests

A.1.3.1 Each fitting selected as in A.1.2.2 shall be examined for the requirements given in 5.2.2 and 6.

A.1.3.2 Each fitting selected as in A.1.3.1 shall be examined for requirements given in 5.2.1 and 5.3 of this specification.

A.1.3.3 If the lot has been found satisfactory in respect of visual and dimensional requirements, a sub-sample of twelve fittings shall be tested for the requirements given in Table 22.

Requirement	Number of fittings
5.1.1	1
5.1.3	1
5.2.3	1
5.4.1	1
5.4.2	3
5.5.1	3
5.5.2	4

 TABLE 22 - Number of samples to be tested for each requirement

A.1.4 *Conformity to standard*

A.1.4.1 The lot shall be declared as conforming to the requirements of this standard if the following conditions are satisfied:

A.1.4.2 Each fitting satisfies the relevant requirements when inspected as given in A.1.3.1 and A.1.3.2.

A.1.4.3 Each fitting in the sub sample tested as in A.1.3.3 satisfies the relevant requirements.

-----//-----

Amendment No. 1 to SLS 659: 2015 approved on 2019-04-03.

Sri Lanka Standard Specification for unplasticized poly (vinyl chloride) fittings for water supply and for buried and above ground drainage and sewerage under pressure

Page 07

5.3.1 Nominal Diameters

Delete existing sub clause **5.3.1** and substitute with the following;

"5.3.1 Nominal diameters

The nominal inside diameter(s), dn, of a fitting shall correspond to, and be designated by, the nominal outside diameter(s) of the pipe(s) for which the fitting is designed.

The Minimum wall thickness of injection moulded fittings shall be 3.0 mm"

5.3.2.2 Diameters, laying lengths, bend radii and angles

Add following under note;

"For laying length of reducing sockets, reducing sockets (shorts bush type), reducing tees, reducing elbows refers Appendix B"

Page 08

Table 1

Delete existing foot note (a) and (b)

Add the following "See figure 1"

Page 17

Delete the existing Figure 10

Add the following

"d₁ - Diameter of the complete circle.

Curvature of the tapping saddles shall be same as that of the pipe on which saddle is mounted. Measurement of the internal diameter of the tapping saddle shall be made accordingly.

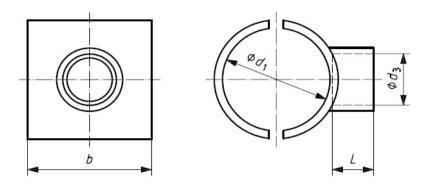


FIGURE10 - Typical socket saddle with solvent cement type socket"

Page 31

6.1 Marking on fittings

Add following to the sub clause 6.1

e) Intended use as "W/P"

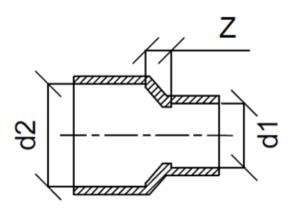
Note:

W-Drinking water supply, Pressure

P- Drainage and Sewerage, Pressure

Page 36

Incorporate the following as **Appendix B**.


APPENDIX B

LAYING LENGTHS OF REDUCING SOCKETS, REDUCING TEES AND REDUCING ELBOWS

B.1 The laying lengths of reducing socket, reducing tees and reducing elbows shall be as given in Table 23 (a), 23 (b), 24 and 25 respectively.

MINOR DIAMETERS		MAJOR DIAMETERS OF JOINTING									
JOINTING											
(d ₁)						(d ₂)					
	2	3	4	5	6	7	8	9	10	11	12
	25	32	40	50	63	75	90	110	125	140	160
					Laying	g Lengtl	ns (Z)				
	<u>+</u> 1			<u>+</u>	1.5				± 2		
20	6	8	10	15							
25		8	10	13	20						
32			10	13	17	21					
40				13	17	19	25				
50					17	19	23	30			
63						19	23	27	32		
75							23	27	32	35	
90								27	32	35	40
110									32	35	40
125										35	40
140											40

TABLE 23 (a) – Laying length of reducing sockets (see Figure 25 a)

3

FIGURE 25 (a)

Size (mm)	Laying length (mm) (Z)
(1)	(2)
25 x 20	3+1 -1
32 x 20	3 +1.6 -1
32 x 25	3 +1.6 -1
40 x 20	3 +2 -1
40 x 25	3 +2 -1
40 x 32	3 +2 -1
50 x 32	3 +2 -1
50 x 40	3 +2 -1
63 x 32	3 +2 -1
63 x 40	3+2 -1
63 x 50	3+2 -1
75 x 63	4+2 -1
90 x 75	5 +2 -1

TABLE 23 (b) – Laying length of reducing sockets (shorts bush type) (see Figure 25 b)

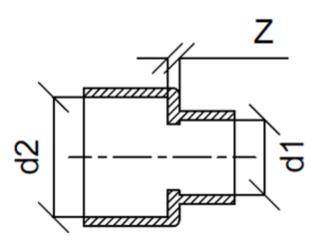
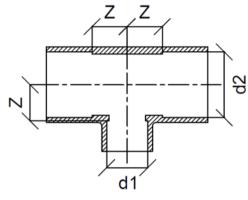



FIGURE 25 b

Size (mm)	Laying length (Z)
25 x 20	13.5 +1.2
	-1 17 +1.6
32 x 20	
20 - 25	-1 17 +1.6
32 x 25	-1
40 x 20	21 +2
10 . 25	-1 21 +2
40 x 25	-1
40 x 32	21 +2
	-1
50 x 20	26 +2.5 -1
50 x 25	26 +2.5
00 A 20	-1
50 x 32	26 +2.5
50 x 40	-1 26 +2.5
50 X 40	
63 x 25	-1 32.5 +3.2
63 x 32	-1 32.5 +3.2
03 X 52	-1
63 x 40	32.5 +3.2
	-1
63 x 50	32.5 +3.2 -1
75 x 32	38.5 +4
	-1
75 x 40	38.5 +4
75 x 50	-1 38.5 +4
75 X 50	-1
75 x 63	38.5 +4
90 x 40	-1 46+5
90 X 40	40 +5 -1
90 x 50	46 +5
	-1 46+5
90 x 63	40 +3 -1
90 x 75	46 +5
70 X / J	-1
L	1

TABLE 24 – Laying length of reducing tees (see Figure 26)

110 x 50	56 +6
	-1
110 x 63	56 +6
	-1
110 x 75	56+6
	-1
110 x 90	56+6
	-1
160 x 110	81 +7
100 A 110	-1

Size	Laying length (Z)
mm	mm
25 x 20	mm 13.5 +1.2
	-1 17 +1.6
32 x 20	17 +1.6
32 x 25	-1
40 x 20	21 +2
40 x 25 40 x 32	-1
50 x 32	-1 26 +2.5
50 x 40	-1 32.5 +3.2
63 x 32 63 x 40	32.5 +3.2
63 x 50	-1
75 x 40	38.5 +4
75 x 50	-1
75 x 63	38.5 +4
	<u>-1</u> 46+5
90 x 50	40 + 5
90 x 63	-1 46+5
90 x 75	40 + 3
	-1

TABLE 25 – Laying length of reducing elbows (see Figure 27)

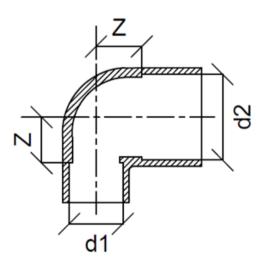


FIGURE 27-Reducing Elbow

7

SLS CERTIFICATION MARK

The Sri Lanka Standards Institution is the owner of the registered certification mark shown below. Beneath the mark, the number of the Sri Lanka Standard relevant to the product is indicated. This mark may be used only by those who have obtained permits under the SLS certification marks scheme. The presence of this mark on or in relation to a product conveys the assurance that they have been produced to comply with the requirements of the relevant Sri Lanka Standard under a well designed system of quality control inspection and testing operated by the manufacturer and supervised by the SLSI which includes surveillance inspection of the factory, testing of both factory and market samples.

Further particulars of the terms and conditions of the permit may be obtained from the Sri Lanka Standards Institution, 17, Victoria Place, Elvitigala Mawatha, Colombo 08.

Printed at SLSI (Printing Unit)

SRI LANKA STANDARDS INSTITUTION *

The Sri Lanka Standards Institution (SLSI) is the National Standards Organization of Sri Lanka established under the Sri Lanka Standards Institution Act No. 6 of 1984 which repealed and replaced the Bureau of Ceylon Standards Act No. 38 of 1964. The Institution functions under the Ministry of Industry & Commerce.

The Principal objects of the Institution as set out in the Act are to prepare standards and promote their adoption, to provide facilities for examination and testing of products, to operate a Certification Marks Scheme, to certify the quality of products meant for local consumption or exports and to promote Standardization and quality control by educational, consultancy and research and research activity.

The Institution is financed by Government grants, and by the income from the sale of its publications and other services offered for Industry and Business Sector. Financial and Administrative control is vested in a Council appointed in accordance with the provisions of the Act.

The development and formulation of National Standards is carried out by Technical Experts and representatives of other interest groups, assisted by the permanent officers of the Institution. These Technical Committees are appointed under the purview of the Sectoral Committees which in return are appointed by the Council. The Sectoral Committees give the final Technical approval for the Draft National Standards prior to the approval by the Council of the SLSI.

All members of the Technical and Sectoral Committees render their services in an honorary capacity. In this process the Institution Endeavours to ensure adequate representation of all view points.

In the International field the Institution represents Sri Lanka in the International Organization for Standardization (ISO), and participates in such fields of Standardization as are of special interest to Sri Lanka.

Printed at the Sri Lanka Standards Institution, 17, Victoria Place, Elvitigala Mawatha, Colombo 08