මෙය රාජ්‍ය භාෂාවෙන් වෙනම මුදුණය කර ඇත.

හු ලංකා පුමිති 379 : 1976 SRI LANKA STANDARD 379 : 1976

විශ්ව දශම වර්ග කිරීම UDC 621-882

බඳණ, ඉස්කුරුප්පු හා මූරිච්චි සඳහා සාමානා අවශාතා සහ කාර්මික සැපසුම් කොන්දේසි GENERAL REQUIREMENTS AND TECHNICAL

GENERAL REQUIREMENTS AND TECHNICAL SUPPLY CONDITIONS FOR BOLTS, SCREWS AND NUTS

ලංකා පුමිති කාර්යාංශය

BUREAU OF CEYLON STANDARDS

GENERAL REQUIREMENTS AND TECHNICAL SUPPLY CONDITIONS FOR BOLTS, SCREWS AND NUTS

1

SLS 379 : 1976

Gr. 16

Copyright Reserved

BUREAU OF CEYLON STANDARDS

53, Dharmapala Mawatha, COLOMBO 3. Sri Lanka Standards are subject to periodical revision in order to accommodate the progress made by industry. Suggestions for improvement will be recorded and brought to the notice of the committees to which the revisions are entrusted.

This Standard does not purport to include all the . necessary provisions of a contract.

. A

BUREAU OF CEYLON STANDARDS 53, DHARMAPALA MAWATHA, COLOMBO 3.

Telephone : 26055 26054 26051 Telegrams : " PRAMIKA "

SLS 379:1976

LIST OF CONTENTS

	Foreword	•••	•••	•••		7
1.	Scope					8
2.	Terminology		•••			8
8.	Grades	•••	•••			10
4.	General Requirements (Wor	kmanship)	•••			11
5.	Dimensional Requirements		•••	•••	*	11
6.	Raw Material and Mechanic	al Propertie	es	•••		27
7.	Surface Finish, Coatings and	d Defects	•••	•••		29
8.	Identification Marking		•••			38
9.	Acceptance tests			•••	la.	86
10.	Sampling		••••	•••		44
	Tables 1 to 21		••••	48	to	66
•	Figs. 1 to 50	•••	•••	14	to	77
- -	Appendix A	•••	•••	•••		67

.

SRI LANKA STANDARD GENERAL REQUIREMENTS AND TECHNICAL SUPPLY CONDITIONS FOR BOLTS, SCREWS AND NUTS

FOREWORD

This Sri Lanka Standard has been prepared by the Drafting Committee on Bolts, Screws and Nuts. It was approved by the Mechanical Engineering Divisional Committee of the Bureau of Ceylon Standards and was authorised for adoption and publication by the Council of the Bureau on 1976-05-05.

This standard which lays down the technical supply conditions for Threaded Fasteners, covers the technical requirements which are common to Bolts, Screws and Nuts, and is intended for use as a supplementary standard for the other standard specifications covering various types of Bolts, Screws and Nuts. For details as applicable to the different types reference should be made to the appropriate standards.

In the preparation of this standard, due weightage has been given to the agreements reached at international level, specially the work done by ISO/TC 2 - Technical Committee on Bolts, Nuts and Accessories. The mechanical properties, designation system and the methods of tests are based on the recommendations of ISO/TC 2.

The three grades of fasteners covered in this standard are expected to meet most of the requirements of the Mechanical Engineering Industry in Sri Lanka and covers both production methods prevalent in the industry at present.

The dimensions and other requirements specified in this standard are in SI units. Equivalents in the metric system or the imperial system are given in a few instances, where necessary. The symbols used to indicate the tolerances and inaccuracies in the relevant figures (Figs. 1 to 25) are in line with the current practices adopted internationally. In this connection reference should be made to ISO/R 1101:1969 --- "Tolerances of Form and Position", issued by the International Organisation for Standardisation.

This standard makes reference to the following Sri Lanka Standards :

CS 12 : 1968 — Method for tensile testing of steel products other than sheet, strip wire and tube.

CS 145:1972	Method for Rockwell Hardness test.
CS 146 : 1972	 Method for Brinell Hardness test.
SLS 268 : 1974	 ISO Metric Screw Threads.
SLS 855 : 1974	 Method of Charpy Impact test (U-notch) for
	Steel.

For the purpose of deciding whether a particular requirement of this standard is complied with, the final value, observed or calculated, expressing the result of a test, shall be rounded off in accordance with CS 102:1971.* The number of figures to be retained in the rounded off values shall be the same as that of the specified value in this standard.

1. SCOPE

This standard deals with technical supply conditions for Bolts, Screws and Nuts and covers general and specific requirements for different grades, mechanical properties and methods of test for the same. Mechanical properties specified are applicable to threaded fasteners upto and including 39 mm thread diameter. It also prescribes the methods of sampling under normal inspection and criteria for conformity for Bolts, Screws and Nuts. The requirements specified in this standard may also be applied, with due care, to products for which no standards are yet formulated.

2. TERMINOLOGY

For the purpose of this standard, the following definitions shall apply:

- 2.1 Acceptance Number The maximum permissible number of defectives in the samples for acceptance of a lot (denoted by AC).
- 2.2 Acceptable Quality Level (AQL) A designated value of maximum per cent defectives in a lot that will be accepted most of the times (approximately 95 times out of 100) by operation of this sampling plan.
 - Note The risk (chance) of rejecting lots of quality better than or equal to AQL is 5 per cent which is known as the 'producer's risk'.

• CS 102 : 1971 - Presentation of numerical values.

- 2.3 Bolt and Nut All fasteners having external threads are referred to as "Bolts" and those having internal threads as 'Nuts', unless otherwise specified.
- **2.4 Burst** A burst is an open break in metal.
- 2.5 Crack A crack is a clean (crystalline) fracture passing through or across the grain boundaries without inclusion of foreign elements. Cracks are usually caused by overstressing the metal during forging or other forming operations. Where parts are subjected to significant reheating, cracks usually are discoloured by scale.
- **2.6 Defect** Failure to meet the requirement imposed on a fastener with respect to a single characteristic.
 - 2.6.1 Major Defect A defect that could result in failure or materially reduce the usability of the product for its intended purpose.
 - **2.6.2 Minor Defect** A defect other than major defect that does not materially reduce the usability of the product for its intended purpose.
 - **2.6.3** Duds An incomplete, mutilated fastener or foreign part.
 - Note For classification of defects for various types of fasteners, reference should be made to the appropriate standard specification.
- 2.7 Defective A fastener which has one or more defects.
- **2.8 Fold** A fold is a doubling over of metal.
- 2.9 Lot Tolerance Per cent Defective (LTPD) The percentage of defective fasteners in a lot that will render it liable for rejection most of the times (approximately 90 times out of 100) by operation of this sampling plan.
 - Note The risk (chance) of accepting lots of quality worse than or equal to LTPD is 10 per cent which is known as 'consumer's risk '.
- **2.10 Lap** A lap is a fold over of metal in the threads of fasteners. If laps occur, they generally show a pattern of consistency between

the product; that is laps will be identically located and with the same direction of traverse between all products.

- 2.11 Nick or Gouge A nick or gouge is an indentation on the surface of a fastener, produced by forceful abrasion on the impact of product coming into contact with other products or manufacturing equipment.
- **2.12 Purchaser** The party purchasing the material. The term purchaser shall also cover person or persons expressly authorised in writing by the purchaser to act on his behalf for inspection of the material.
- **2.13 Rejection Number** The minimum number of defectives in the samples for the rejection of the lots (denoted by Re).
- **2.14 Seam** A scam is a narrow continuous discontinuity in the metal. Scams are generally inherent in the raw material from which the fastener is made. Scams generally run parallel to the product axis.
- **2.15 Shear Failure** A shear failure is an open break in the metal due to overstressing of the metal during forging. Shear failures occur mostly with flange products.
- **2.16 Supplier** The party supplying the material. The supplier may or may not be the actual manufacturer of the material.
- 2.17 Tool Mark Tool marks are longitudinal or circumferential grooves of shallow depths produced by manufacturing tools.
- 2.18 Void A void is a shallow pocket or hollow on the surface of the fastener due to non-filling of metal during forging or upsetting.

3. GRADES

- **3.1** The fasteners shall be of the following grades.
 - a) Precision (P)
 - b) Semi-precision (S)
 - c) Commercial (C)
- **3.2** The grades are specified without any reference to the method of manufacture and the fasteners are not required to exhibit any particular appearance.
- 10

4. GENERAL REQUIREMENTS (WORKMANSHIP)

- 4.1 The fasteners shall be cleanly finished, sound and free from defects which may affect their serviceability, consistent with the grade of the product.
- 4.2 The fasteners shall have full surfaces and edges in keeping with the method of manufacture used. These shall be free from burrs, although barely perceptible thin burrs which result, for example, from slotting and trimming operations, may be left out. The commercial grade bolts may have reasonable die seams on the shank; in no case the shank diameter with such seams shall exceed the maximum permissible diameter.
- 4.3 All nuts of 'P' and 'S' grades shall be countersunk on the bearing face at an included angle of 120°; the diameter of the countersink shall not exceed the nominal major diameter of the thread. With the exception of slotted nuts, all double chamfered hexagonal nuts of grades 'P' and 'S' shall have a countersink as above on both faces.

Commercial grade nuts may also be countersunk at the option of the manufacturer.

4.4 Unless otherwise specified, centre holes in bolts, and screws in all grades may be allowed to remain.

5. DIMENSIONAL REQUIREMENTS

5.1 Dimensional Accuracy

5.1.1 The tolerances on various grades of Bolts, Screws and Nuts shall be as indicated in the respective figures (see Figs. 1 to 25) and applied on the basic sizes given in the relevant dimensional standards. For ready reference, the values of basic tolerances and tolerance zones are given in Tables 1 to 3.

- 5.1.2 The diameter of the chamfer circle on the Bolt and Screw heads, and nut and the washer face diameters of bolt and nut, where applicable, shall be controlled to a minimum of 90 per cent of the nominal across flat dimension of the bolt and screw heads and the nuts.
- 5.1.3 The permissible variation on the nominal length of fasteners shall, unless otherwise specified, be as follows :

Nominal 2	Length, mm	Precision (P)	Semi-Precision (S) and		
Over	Up to and including	to and cluding	Commercial (C) mm		
3	6	<u>+</u> 0·38	± 0.60		
6	10	± 0.45	± 0.75		
10	18	± 0.55	<u>+</u> 0·90		
18	30	± 0.65	± 1.05		
80	50	± 0·80	± 1.25		
50	80	± 0.95	<u>+</u> 1.50		
80	120	± 1·10	± 1.75		
120	180	± 1.25	<u>+</u> 2·00		
180	250	+1.45	<u>+</u> 2·80		
250	815	± 1.60	<u>+</u> 2·60		
815	400	± 1.80	± 2·85		
400	- 500	<u>+</u> 2.00	<u>+</u> 8·15		

Ù

18. /3

5.2 Screw Threads

Press 14

1...

÷

- 5.2.1 The form of thread, diameters and associated pitches of Bolts, Screws and Nuts shall be in accordance with SLS 268* as indicated in Clause 5.2.2.
- 5.2.2 Threads shall conform to the following tolerance classes in accordance with SLS 268 *.

Grade	Tolerance Class		
	Bolts	Nuts	
Precision (P)	6 g	6H	
Semi-Precision (S)	6 g	6H, 6H7H	
Commercial (C)	8 g	7 H	

- 5.2.3 The permissible variation on the length of thread for bolts shall be plus 2 pitches or 5 mm whichever is greater. Unless otherwise specified the screws shall be threaded to within a distance from the underside of the head not exceeding 2 pitches for diameters up to and including 24 mm and 3 pitches for diameters over 24 mm.
- 5.3 Eccentricity The eccentricity of various elements of Bolts, Screws and Nuts shall be within the limits specified in respective figures (Figs. 1 to 25) and as detailed in Table 4.
- 5.4 Angularity Error The angularity error for various fasteners shall not exceed the limits shown in respective figures (Figs. 1 to 25).

•SLS 268 ISO Metric Screw Threads

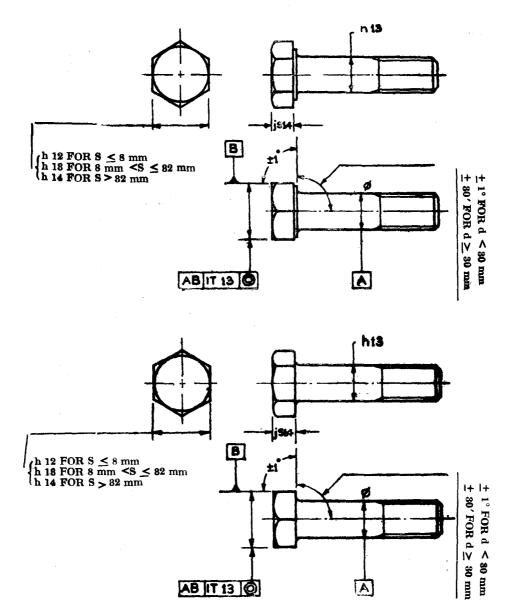
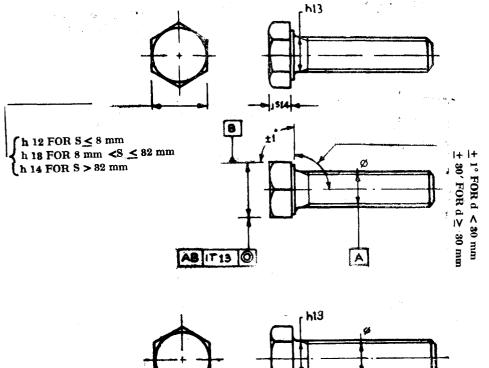
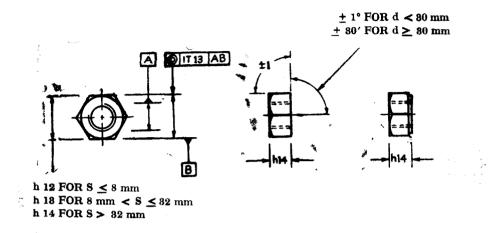
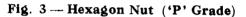
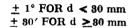


Fig. 1 -- Hexagon Bolt ('P' Grade)

SLS 379 : 1976

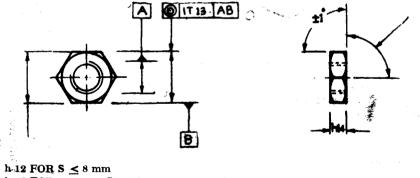
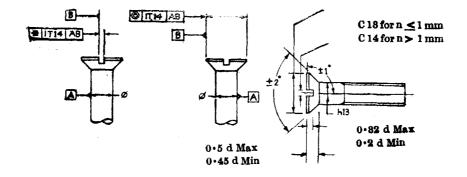
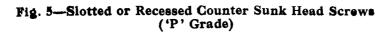
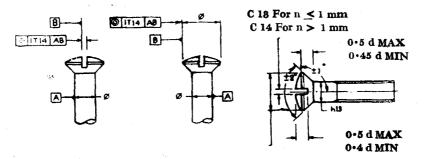


Fig. 2 — Hexagon Screw ('P' Grade)

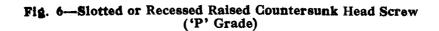
h 18 FOR 8 mm < S < 32 mm h 14 FOR S > 32 mm


Fig. 4 -- Hexagon Lock Nut ('P' Grade)


16


10.3

SLS 379 : 1976


1.7d Min and 2d Max for d ≤ 6 mm 1.75d Min and 2d Max for d > 6mm

1•7 MIN AND 2d MAX FOR d ≤ 6 mm 1•75 d MIN AND 2 d MAX FOR d > 6 mm

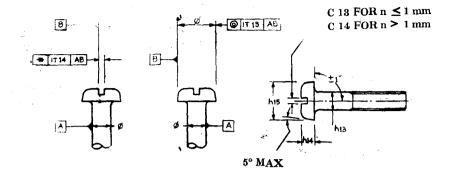
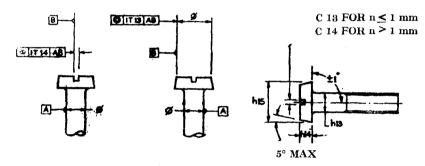
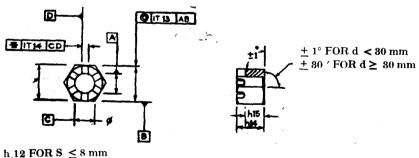




Fig. 7 --- Slotted or Recessed Pan Head Screws ('P' Grade)

23.3

h 12 FOR S \leq 8 mm h 13 FOR 8 mm < S \leq 32 mm h 14 FOR S > 32 mm

Fig. 9 — Slotted Nuts ('P' Grade)

SLS 379 : 1976

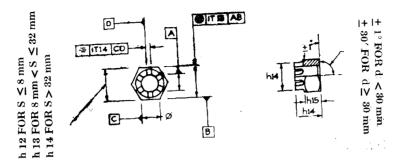


Fig. 10 - Castle Nuts ('P' Grade)

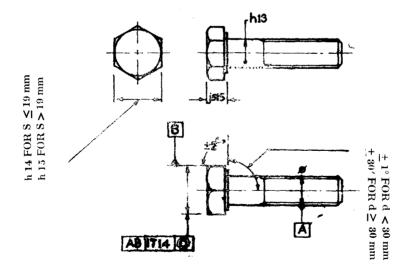


Fig. 11 — Hexagon Bolt ('S' Grade)

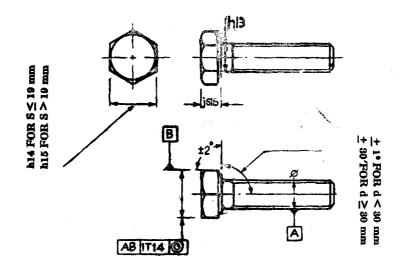
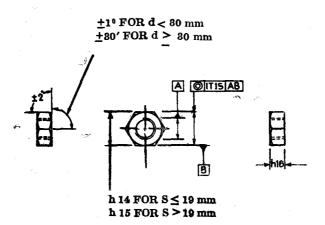
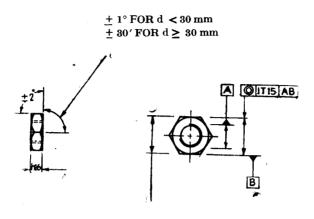
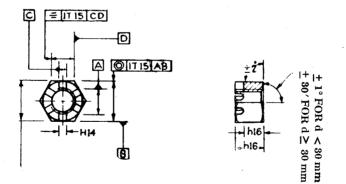



Fig. 12 — Hexagon Screw ('S' Grade)



SLS 379:1976

1


ŧ

I

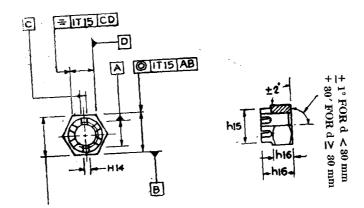

h 14 FOR S \leq 19 mm h 15 FOR S > 19 mm

Fig. 14 — Hexagon Lock Nut ('S' Grade)

h 14 FOR S \leq 19 mm h 15 FOR S > 19 mm

Fig. 15 - Slotted Nut ('S' Grade)

h 14 FOR S \leq 19 mm h 15 FOR S > 19 mm

Fig. 16 -- Castle Nut ('S' Grade)

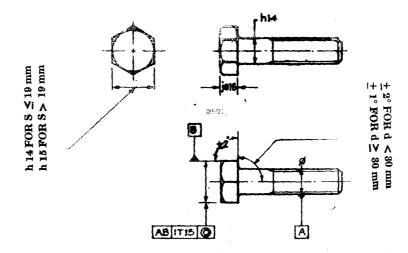


Fig. 17 - Hexagon Bolt ('C' Grade)

SLS 379 : 1976

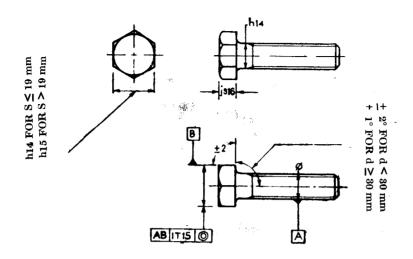
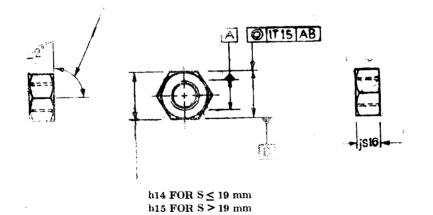
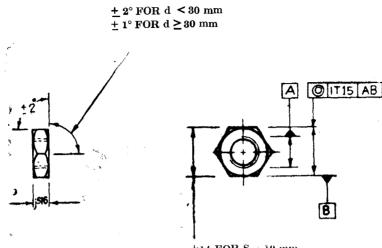
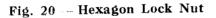


Fig. 18 — Hexagon Screw ('C' Grade)

 \pm 2° FOR d < 30 mm \pm 1° FOR d \geq 30 mm


Fig. 19 — Hexagon Nut ('C' Grade)

Ì

SLS 379: 1976

h14 FOR S = 19 mm h15 FOR S > 19 mm

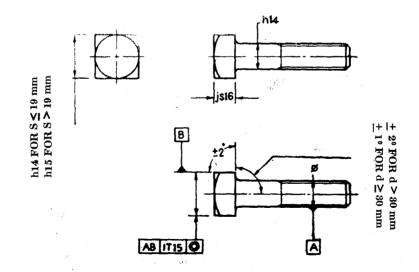


Fig. 21 - Square Bolt ('C' Grade)

-24

SLS 379: 1976

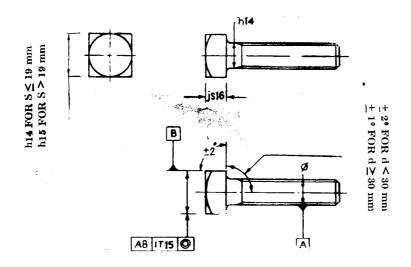
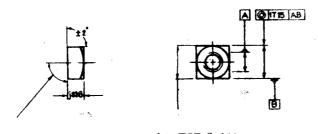
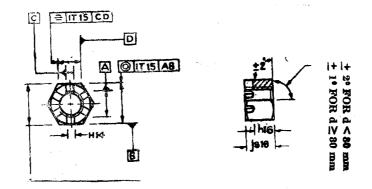



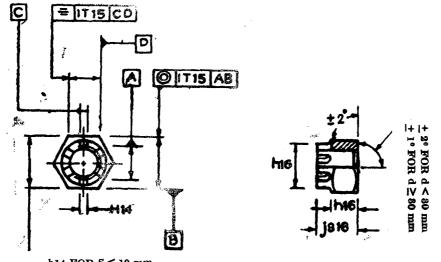
Fig. 22 - Square Screw ('C' Grade)



 $\frac{1}{2^{\circ}}$ FOR d < 30 mm $\frac{1}{2^{\circ}}$ FOR d \geq 30 mm

h14 FOR S≤19 mm h15 FOR S>19 mm

Fig. 23 - Square Nut ('C' Grade)


25 .

¢

h14 FOR $S \le 19$ mm h15 FOR S > 19 mm

Fig. 24 — Slotted Nut ('C' Grade)

h14 FOR $S \leq 19$ mm h15 FOR S > 19 mm

Fig. 25 - Castle Nut ('C' Grade)

6. RAW MATERIAL AND MECHANICAL PROPERTIES

6.1 The mechanical properties, specified hereunder, shall apply to threaded fasteners up to and including 39 mm thread diameter, made of carbon steel or alloy steel and not having special properties, such as weldability, corrosion resistance and ability to withstand temperature above 300 °C. The mechanical properties specified shall not apply to Bolts, Screws and Nuts made of Brass or Aluminium Alloy, unless specifically stated.

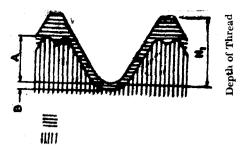
In case of nuts, the proof load requirements specified shall apply only to the nuts having the length of engagement of thread not less than 0.78 times the nominal diameter. These tests, however shall be applicable to all such nuts covered by Sri Lanka Standards except those specifically excluded from the provisions of these tests as may be mentioned in the appropriate specifications.

6.1.1 The mechanical property requirements of bolts and nuts covered by this standard are classified into a number of grades called property classes. Table 5 and Table 6 gives the preferred property classes for bolts, screws and nuts respectively.

6.2 Bolts and Screws

1

6.2.1 Designation System — The designation system for property classes of Bolts and Screws covered by this standard is shown in the system of co-ordinates in Table 7. The abscissa shows the tensile strength values while the ordinate shows the elongation after fracture.


The symbol consists of two figures, separated by a dot:

- (a) the first figure indicates 1/100 of the nominal tensile strength value in N/mm²,
- (b) the second figure indicates 1/10 of the ratio between the nominal yield stress and minimum tensile strength expressed as a percentage.

The multiplication of these two figures will give 1/10 of the nominal yield stress in N/mm³.

6.2.2 Mechanical Properties and Decarburization

- 6.2.2.1 The bolts shall satisfy the requirements set out in Table 5. These tests shall be carried out as prescribed under Clause 9.2.
- 6.2.2.2 When Brass or Aluminium Alloy is used for the manufacture of bolts and screws, the material shall have a minimum tensile strength of 295 N/mm² (30 kgf/mm²).

 $A - MIN \stackrel{\text{\tiny 2}}{=} H_1 \quad B - MAX \stackrel{1}{\to} H_1$

- \equiv Completely and partially Decarburized Zone
- |||| Non-Decarburized Zone.
- Fig. 26 Depth of Decarburization
- **6.2.3** Raw Material Provided the bolts and screws meet all the requirements of 6.2.2.1, use of any particular steel or heat treatment procedure shall not be mandatory; these are left to the discretion of the manufacturer. Table 8 which specifies steels suitable for the property classes of Bolts and Screws mentioned in it, is for use as a guide only.

Brasses and Aluminium Alloys suitable for Bolts and Screws are also given in Table 9 as a guide.

6.3 Nuts

6.3.1 Designation System — The property classes of nuts are designated by the numbers which represent 1/100 of the proof load stress in N/mm² specified in Table 6.

6.3.2 Mechanical Properties

6.3.2.1 The nuts shall satisfy the requirements set out in Table 6. These tests shall be carried out as prescribed in Clause 9.3.

- 6.3.2.2 If Brass or Aluminium Alloy is used for the manufacture of Nuts, the material shall have a minimum tensile strength of 295 N/mm² (30 kgf/mm²).
- 6.3.3 Raw Material The nuts shall be made of steel conforming to the chemical composition specified in Table 10. Brasses and Aluminium Alloys suitable for nuts are also given in Table 9, as a guide.

7. SURFACE FINISH, COATINGS AND DEFECTS

7.1 Surface Finish — The surface finish of the three grades of fasteners shall be as detailed below.

Fastener	Surfa	ice	Surface	
Grade	Bolts and Screws	Nuts	Conditions	
р	All surfaces and threads except points Point of bolt	hreads except points threads		
S	Thread shank and bearing face All other faces	shank and Thread and grace bearing face		
		diameter of thread	Finished	
с	Flank and minor diameter of thread	Flank and major diameter of thread	Machined	
	Major dia meter of thread	Minor diameter of thread	Finished	
<u> </u>	All other faces	All other faces	Unfinished	

Notes: (a) Machined surfaces shall not have a roughness greater than 2 µm (CLA).

(b) Finished surfaces are those presenting a smooth and good appearance. The surface may be machined or not machined. The roughness shall not exceed 3 μ m (CLA).

4

- (c) Unfinished surfaces are those where slight irregularities are permissible within the tolerance given, and may be machined to remove noticeable defects.
- (d) Centre Line Average (CLA) Numerical assessment of the average height of the irregularities constituting the surface texture.
- 7.2 Surface Coatings If the purchaser requires the Bolts, Screws and Nuts to be coated the coatings shall conform to the details given below.
 - 7.2.1 Steel Fasteners When steel fasteners are supplied without any coating they shall be oiled or oiled and blackened to protect the items from rusting in transport and storage under humid conditions upto a period of six months.

7.2.1.1	Coatings	when	required	shall	be of	the following
	types :					

Electro deposited coatings	(i) Cadmium (ii) Nickel or Nickel and Chromium
· · · · · · · · · · · · · · · · · · ·	(iii) Zinc
Chemically produced coatings	(i) Phosphate coating
	(ii) Oxide coating
Direct metallic coating	(i) Zinc (ii) Lead

In all cases the deposits shall adhere to the underlying metal and there shall be no visible signs of lamination or blistering. 7.2.1.2 Electro Deposited Coatings—The average thickness of a representative sample of a batch shall be within the limits specified in the following table. Thread dimensions of components supplied for plating and after plating shall comply with the relevant screw thread standards.

	or Diameter of v Thread	*Batch Average Thickness		
Over Up to and including		Minimum	Maximum	
$ \begin{array}{r} 1 \cdot 52 \\ 3 \cdot 20 \\ 6 \cdot 35 \\ 12 \cdot 70 \end{array} $	$ \begin{array}{r} 3 \cdot 20 \\ 6 \cdot 35 \\ 12 \cdot 70 \\ 19 \cdot 05 \end{array} $	$\begin{array}{c} 0.0038\\ 0.0051\\ 0.0064\\ 0.0076\end{array}$	$\begin{array}{c} 0.0051 \\ 0.0064 \\ 0.0076 \\ 0.0089 \end{array}$	

Plating Thickness (Unit : Millimetre)

*A 'batch' shall mean a quantity of identical components plated together at one time (in a particular barrel).

7.2.1.3 Chemically produced Coatings—The thickness of chemically produced coatings shall be as follows :

Phosphate Coating	2	µm ((minimum)
Oxide Coating			(minimum)

The thickness of coatings shall be determined by microscopic examination of the cross-section.

All high tensile bolts (above grades 10.9) shall be stress relieved before any chemical treatment.

Thicker coatings shall be specified by the purchaser if required in agreement with the manufacturer.

7.2.1.4 Direct Metallic Coatings—The thickness of coating shall be a minimum of 50 µm (batch average).

The threads of galvanised fasteners may be rerolled but not refinished unless specifically allowed. A tolerance of 1 mm max. will be permissible on the unthreading body diameter and height of head and width across flats of the fasteners. .

Bolts may be further passivated (oxide coat) after completion. This is usually done by immersing in various acid mixtures at set temperatures for standard duration of time. They are then thoroughly rinsed with hot water.

7.2.2 Aluminium Alloy Fasteners—Aluminium alloy fasteners shall be anodised to give both protective and decorative effects when expressly desired by the purchaser.

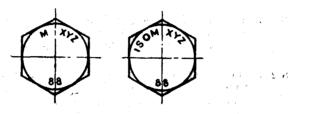
7.2.3 Brass Fasteners

- 7.2.3.1 Coatings when required shall be of the following types :
 - i) Tin
 - ii) Nickel or Nickel and Chromium
 - iii) Chromium
 - iv) Lead
- **7.2.3.2** The deposit shall adhere firmly to the underlying metal and there shall be no visible signs of lamination or blistering.
- 7.2.3.3 The average thickness of a representative sample of a batch shall be within the limits specified in the table above (as for steel fasteners). Thread dimensions of components supplied for plating and after plating shall comply with the relevant screw thread standards.
- 7.3 Surface Defects Fasteners shall be reasonably free of surface defects such as quench cracks, forging cracks, seams, bursts, shear failure, voids, laps, fold, tool marks and nicks. They shall not in anyway interfere with the strength and serviceability of the fasteners. Guidance in this respect is given in Appendix A.

8. IDENTIFICATION MARKING

8.1 General — The marking and identification requirements of this standard is only mandatory for steel Bolts, Screws and Nuts of 6 mm diameter and larger, manufactured to strength grade designations 8.8 (for Bolts or Screws) and 8 (for Nuts) or higher.

8.2 Bolts and Screws


- 8.2.1 Bolts and screws shall be identified as ISO metric by the symbol 'M' embossed or indented on top of the head.
- 8.2.2 The manufacturer's identification (trade) marking shall be embossed or indented on the top of the head of Bolts and Screws manufactured by cold forging.
- 8.2.3 Bolts and Screws manufactured to strength grades 8.8, 10.9 and 12.9 shall be marked on top of the head with the appropriate symbol. Other grades may be similarly marked at the option of the manufacturer. The 'separating full stop ' in the strength grade symbol may be omitted so that the grades may be marked 88, 109 and 129 (see Fig. 27).
- 8.2.4 Bolts and Screws turned from bar shall alternatively have the metric symbol 'M' and the appropriate strength grade symbol indented or rolled into the sides of the hexagon flat. (see Fig. 28).

8.3 Nuts

- 8.3.1 Nuts may carry some form of manufacturer's identification trade marking.
- **8.3.2** Nuts turned from hexagon bar shall have the metric symbol 'M' indented or rolled into one of the hexagon flats.
- 8.3.3 Nuts manufactured to strength grades 8 and 12 shall be appropriately marked by either of the following alternative methods (see Figs. 29 and 30). Nuts manufactured in strength grades 4, 5 and 6 may be marked at the option of the manufacturer.
 - 8.3.3.1 The strength grade symbol indented into the bearing or non-bearing face of the nut. In the case of nuts turned from hexagon bar the symbol may

be indented or rolled into the side of one of two hexagon flats.

8.3.3.2 The strength grade indicated by means of a 'clock face' system which shall be marked preferably on the external chamfers of the nut by indenting or embossing. Embossed marks shall in no case protrude beyond the bearing face of the nut. The 'clock face' system may alternatively be indented in the bearing or non-bearing face of the nut.

82.1

Fig. 27 - Examples of marking forged products

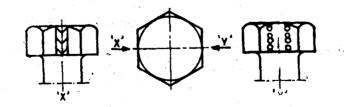


Fig. 28 - Examples of marking of bar turned products.

4

 $\{ r$

SLS 379:1976

	· ·				
Strength grade	4	5	6	8	12
Symbol	4.	5	6	8	12
Alternative ' clock face ' marking system					

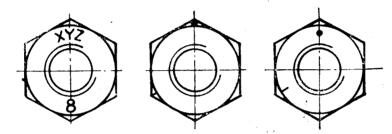
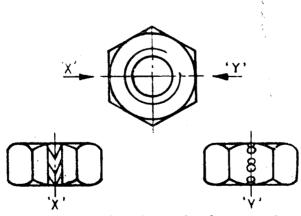
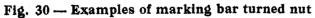




Fig. 29 - Examples of marking of forged products

9. ACCEPTANCE TESTS

4

- 9.1 General The manufacturer should maintain statistical quality control to ensure that the product conforms to the accuracy, mechanical properties, finish and other requirements specified in this standard. Suitable number of samples from each consignment shall be selected as specified in Clause 10. The number of tests for acceptance shall be as specified in Clause 10. The tests given under 9.2 shall be applied for checking the requirements given in this standard.
- 9.2 Test for Mechanical Properties and Surface Decarburization of Bolts and Screws—Two programmes A and B, of tests for mechanical properties of Bolts and Screws using the methods described in 9.2 are set out in Table 11. The choice between A and B will be a matter of agreement between the purchaser and the manufacturer.

The mechanical properties of Bolts and Screws that are decisive for acceptance are shown in Table 11. These have been arranged in five groups marked I to V according to the manner in which these are related to one another. In each of these groups, the test marked '@' is decisive for acceptance. If the purchaser wishes to simplify the acceptance test, the above mentioned tests may be replaced by the tests marked '*'. In the case of doubt, the first mentioned tests are decisive unless it is not possible to carry out these for dimensional reasons. In this case, the test marked '*' will be decisive.

Subject to special agreement, tests marked 'O' may be included in addition or may replace the tests marked '@'.

9.2.1 Tensile test for machined test pieces — The tensile test shall be conducted in accordance with CS 12* on a test piece as shown in Fig. 31.

^{*}CS 12 Method of tensile testing of steel products other than Sheet, Strip, Wire and Tube.

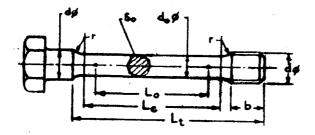


Fig. 31 --- Test piece.

The following properties are to be checked by this test:

- a) Tensile strength, R_m
- b) Yield stress, R_e or stress at 0.2 per cent permanent set limit, $R_{0.2}$.
- c) Percentage elongation after fracture

$$\mathbf{A} = \frac{\mathbf{L}_{\mathbf{u}} - \mathbf{L}_{\mathbf{o}}}{\mathbf{L}_{\mathbf{o}}} \times 100 \text{ (per cent)}$$

The reduction of the shank diameter of heat-treated bolts and screws under 16 mm thread diameter shall not exceed 25 per cent of the diameter (about 44 per cent of the crosssectional area) when preparing the test piece.

9.2.2 Tensile Test for Full Size Bolts — The tensile test should be carried out on full size bolts in conformity with the tensile test on machined test pieces (Clause 9.2.1). It is carried out to determine the tensile breaking load for the bolt which shall have a minimum tensile load as given in Tables 12 and 13 for bolts with coarse and fine series threads respectively.

> When carrying out the test, a free threaded length equal to the nominal diameter of the bolt is subjected to the tensile load. To meet the requirement of this test, the fractur e should occur in the shank or the thread of the bolt and not between the head and the shank.

Screws threaded to the head, should meet the requirement of this test, if a fracture, which causes failure, originates in the threaded area even if it has extended into the fillet area under the head, before separation.

- 9.2.3 Brinel Hardness Test The Brinell hardness test shall be carried out with a 10 mm diameter steel ball and 3,000 kg load in accordance with CS 146[†]. The hardness indentation shall be made on the top or side of the head or on the end point of the bolt. In case of studs, it shall be made on the unthreaded portion or on the end face.
- **9.2.4 Rockwell Hardness Test** The Rockwell hardness test shall be carried out in accordance with CS 145*. The hardness indentation shall be made on the top or side of the head or on the end point of the bolt. In case of studs, it shall be made on the unthreaded portion or on the end face.
- **9.2.5** Proof load test for full Size Bolts The proof load test consists of two main operations namely :
 - a) application of a specified tensile proof load; and
 - b) measurement of permanent extension, if any, caused by the proof load.

The arrangement of the test is shown in Fig. 32.

The proof load is applied axially to the bolt in a tensile testing machine. The length of free thread above the nut should be between 0.5 d and 1 d.

For the measurement of permanent extension, the bolt should be axially centre-drilled (60° — cone) at each end. Before and after the application of the proof load, the bolt should be placed in a bench-mounted measuring instrument fitted with spherical anvils so as to ensure that the total of the measuring inaccuracies is less than + 5 μ m.

Other methods of measuring length may be used, provided that the above standard of accuracy is maintained.

[†]CS 146 Method for Brinell Hardness test.

^{*}CS 145 Method for Rockwell Hardness test.

The proof leads to be applied for bolts and screws with coarse series threads are given in Table 14 and for Bolts and Screws with fine series threads are given in Table 15.

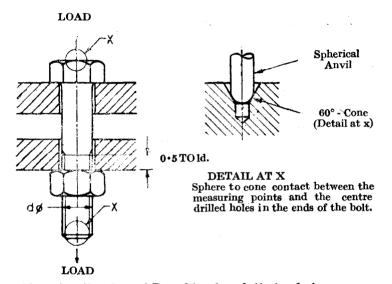


Fig. 32 — Application of Proof load to full size bolts.

9.2.6 Test for Strength under Wedged Loading of full Size Bolts — This test shall be carried out on full size bolts as per Clause 9.2.2 except that a hardened steel wedge shall be placed under the bolt head. The test shall be performed on the same bolt as previously tested for proof load (Clause 9.2.5). The bolt head shall be so placed that no corner of the hexagon or square takes a bearing load, that is, a flat of the head shall be aligned with the direction of uniform thickness of the wedge, details of which are given in Fig. 33. The hardness of the wedge shall be 50 HRC (in accordance with CS 145).

The bolt shall withstand, before fracture, the minimum tensile load given in Tables 12 and 13 for bolts with coarse and fine series threads respectively. The fracture shall take place in the shank or the thread of the bolt and not between the head and the shank.

Screws threaded to the head should meet the requirement of this test if a fracture, which causes failure, originates in the threaded area even if it has extended into the fillet area under the head before separation.

9.2.7 Impact Test for Machined Test Pieces — The impact test shall be carried out in accordance with SLS 355*. The test piece shall be taken lengthwise, located as close to the surface of the Bolt as possible. The un-notched side of the test piece should be located near the surface of the Bolt. This test applies to Bolts having nominal diameter over 12 mm.

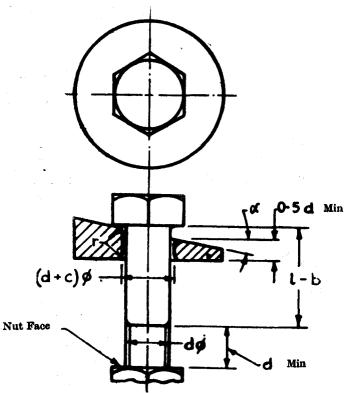
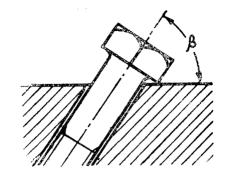


Fig. 33 — Wedge loading of full size bolts (see table below)

*SLS 855 Method of Charpy impact test (U-notch) for steel.

	al Bolt ze				ANGLE α	+ 30'	·
Over	Up to	r	c	(l — b)	≥ 2d	(l — b)	< 2d
			2 5 8	Property Class 4.6, 4.8	Property Class 10.9 &	Property Class 4.6, 4.8,	Property Class 10 · 9 &
mm	mm	mm	mm	6.8 & 8.8	12.9	6·8 & 8·8	12.9
	6	0.5	0.7	10°	6°	6°	4 °
6	12	0.8	0.8	10°	6 °	6°	4 °
12	20	1.6	1.8	10°	6°	6 °	4°
20	39	3 · 2	$1 \cdot 6$	6°	4°	4 °	4 °


Table for Figure 33

where b = length of thread l = length of bolt.

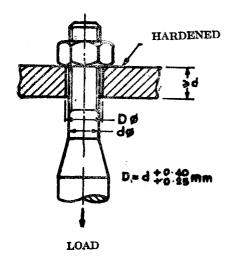
9.2.8 Head Soundness Test for full Size Bolts — The head soundness test is carried out as illustrated in Fig. 34. The hardness of the block and the dimensions of the hole shall be the same as those given for the wedge in Clause 9.2.6.

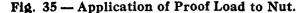
When struck several blows with a hammer, the head of the Bolt or Screws should bend through an angle of $(90^\circ - \beta)$ without exhibiting any sign of cracking at the fillet between the head and the shank.

9.2.9 Decarburization Test — The decarburization is to be determined from longitudinal section taken from the threaded portion. The plane of section should be within 1/10 of the diameter from the Bolt axis. For permissible depth of surface decarburization, see Fig. 26.

Fig. 34 — Head Soundness test.

For the purpose of determining surface decarburization, a longitudinal microsection should be polished and subsequently etched with an alcoholic solution of nitric acid. The surface decarburization should be measured with a micrometer ocular at a magnification of 100:1.


9.3 Tests for Mechanical Properties of Nuts — The Nuts shall be tested in accordance with test methods described in Clauses 9.8.1 and 9.8.2 for strength under proof load and hardness.


To meet the requirements of this specification, both proof load and hardness test shall be decisive for acceptance.

Nuts with specified proof load in excess of 343 kN may be exempted from proof load testing.

Such nuts, in addition to complying with the maximum hardness requirement, shall meet the minimum hardness requirement as agreed to between the purchaser and the manufacturer.

9.3.1 Proof Load Test — The Nut shall be assembled on a hardened and threaded mandrel as shown in Fig. 85.

The proof load shall be applied against the Nut in an axial direction. The Nut shall resist this load without failure by stripping or rupture, and shall be removable by the fingers (except for prevailing torque type self locking nuts) after the load is released. If the threads of the mandrel are damaged during the test, the test shall be discarded. (It may be necessary to use a wrench to start the nut in motion. Such wrenching is permissible provided it is restricted to half turn and the nut is then removable by the fingers following initial loosening).

The proof loads to be applied for nuts with coarse series threads are given in Table 16 and for Nuts with fine series threads, in Table 17.

The hardness of the test mandrel shall be HRC 45, minimum (in accordance with CS 145).

Mandrels used in testing shall be threaded to tolerance class 5h, except that the tolerance of the major diameter shall be one quarter of the 6 g range on the minimum material side. 9.3.2 Hardness Test — Either Brinell hardness or Rockwell hardness may be determined.

The Brinell hardness test shall be carried out with 10 mm diameter steel ball and 3 000 kg load in accordance with CS 146.

The Rockwell hardness test shall be carried out in accordance with CS 145.

The hardness indentation shall be made on the face or side of the nut.

10. SAMPLING

10.1 Scale of Sampling

- 10.1.1 Fasteners shall be selected and examined for each lot separately for ascertaining their conformity to the requirements of the relevant specification. Only one set of samples as indicated in 10.1.2 shall be drawn from a lot for all the characteristics of the product to be inspected.
- 10.1.2 The number of fasteners to be selected from a lot shall depend upon the size of the lots and shall be in accordance with Columns 1 to 3 of Table 18 for normal inspection, and Columns 1 and 2 of Table 19 for inspection of physical properties.
- 10.1.3 All these fasteners shall be taken at random from the lot.

10.2 Criteria for Conformity

- 10.2.1 Visual Characteristics All the fasteners drawn under 10.1.2 shall be first examined for visual characteristics like type, finish, workmanship, surface defects, duds and identification mark. To ascertain the conformity of the lot to the requirements of all visual characteristics except duds, the procedure given in 10.2.1.1 shall be followed and for duds the procedure given in 10.2.1.2 shall be followed.
 - 10.2.1.1 Visual Characteristics Other than Duds If in the first sample the number of defective fasteners with respect to all visual characteristics

. .

except duds is less than or equal to the corresponding acceptance number given in Column 5 of Table 18, the lot shall be declared as conforming to the requirements for these characteristics. If the number of defectives is greater than or equal to the corresponding rejection number given in Column 6 of Table 18, the lot shall be deemed as not meeting the requirements for these characteristics. If the number of defectives is greater than the acceptance number but less than the rejection number, a second sample of the same number of fasteners selected as the first sample shall be taken to determine the conformity or otherwise of the lot. The number of defectives found in the first and second sample shall be combined and if the combined number of defectives is less than or equal to the corresponding acceptance number, the lot shall be declared as conforming to the requirements, otherwise not.

- **10.2.1.2** If the number of defective fasteners with respect to duds is less than or equal to the corresponding acceptance number given in Column 7 of Table 18 the lot shall be declared as conforming to the requirements for duds. If the number of defective fasteners is greater than or equal to the rejection number given in Column 8 of Table 18, the lot shall be declared as not conforming to the requirements for duds. If the number of defective fasteners is greater than the acceptance number but less than the rejection number, a second sample of the same number of fasteners selected as the first sample shall be taken to determine the conformity or otherwise of the lot. The number of defective fasteners found in the first and second samples shall be combined and if the combined number of defective fasteners is less than or equal to the corresponding acceptance number, the lot shall be declared as conforming to the requirements for duds, otherwise not.
- 10.2.2 Dimensional characteristics The lot which had been found satisfactory in respect of visual characteristics (see 10.2.1) shall next be tested for dimensional characteristics like diameter, length and pitch. The fasteners for this

purpose shall be taken at random in accordance with Columns 9 and 10 of Table 18, from those already drawn for inspection of visual characteristics (see 10.2.1.1 and 10.2.1.2. and tested for the dimensional characteristics. If the number of fasteners failing to satisfy the requirements for these characteristics is less than or equal to the corresponding acceptance number given in Column 12, 14, 16 or 18 of Table 18, the lot shall be declared to have met the requirements of the specification in respect of these characteristics). If the number of defectives is greater than or equal to the corresponding rejection number given in Column 13, 15, 17 or 19 of Table 18 the lot shall be deemed as not conforming to these characteristics. In case the number of defectives lies in between the acceptance and rejection numbers, a second sample of the same size shall be taken and inspected for the dimensional characteristics and inference drawn accordingly.

- 10.2.3 Physical Properties In case proper quality control of the raw material to the satisfaction of the purchaser or the inspecting officer, has been maintained by the manufacturers and the quality was found to be satisfactory as evidenced by suitable certificates accompanying the lot, no test may be required for the determination of physical properties like hardness and tensile strength. If, however, such a control did not exist, or if the purchaser so desires, fasteners may be drawn at random in accordance with Column 1 and 2 of Table 19 from those already selected according to 10.1.2 and tested for physical properties. If the number of defectives found in the sample is less than or equal to the corresponding acceptance number in Column 13, the lot shall be deemed as meeting the requirements for physical properties, otherwise not.
- 10.2.4 A lot shall be declared as conforming to this specification if it satisfies the requirements for the visual and dimensional characteristics and physical properties.

Lot Size (1)	Sample Size (2)	Acceptance Number (3)
Up to 1 000	5	0
1 001 to 3 000	8	0
3 001 to 10 000	13	0
10 001 to 35 000	20	0
Over 35 000	32	1

Table 19 — Scale of Sampling and Conformity Criteria for
Physical Properties

10.3 Tightened and Reduced Inspection

- 10.3.1 In case the quality of the submitted lots varies considerably, it may be desirable to make appropriate changes in the sampling plan. If the quality of the submitted lots is consistently bad, it may be desirable to tighten the inspection : on the other hand, if the quality of the submitted lots is consistently good, it may be desirable to relax the inspection. The following procedure may be helpful in deciding on tightened or reduced inspection :
 - a) Shift to tightened inspection if 2 of the last 5 (or less) lots under normal inspection were rejected; reinstate normal inspection when three successive lots are accepted under tightened inspection; and
 - b) Shift to reduced inspection if the preceding 10 lots under normal inspection have all been accepted; reinstate normal inspection if on reduced inspection a lot is rejected and if at the same time the rejected lot is preceded by less than 10 lots accepted on reduced inspection.
 - 10.3.1. 1 Tightened Inspection—Inspection shall be tightened by using, a sampling plan as given in Table 20 for the corresponding lot size and drawing appropriate inference on the same lines as given in 10.2.1, 10.2.2 and 10.2.3 for determining the conformity of the lot.

Tightening of inspection has been achieved by retaining the same sample size as in the normal inspection but reducing the acceptable quality levels by way of reduction in the acceptance and rejection numbers wherever possible. đ

10.3.1.2 Reduced Inspection—Inspection shall be relaxed by using a sampling plan as given in Table 21 for the corresponding lot size and drawing appropriate inference as before.

> Relaxation of inspection has been achieved by reducing the sample size as recommended for normal inspection and retaining approximately the same acceptable quality levels as far as possible.

Table 1 -- Tolerances for Grades IT11 to IT17

Nor	ninal Si Range	16 1774 -	Tolerance Grade									
			IT11	IT12	IT13	IT14	IT15	IT16	IT17			
From	0.2 to	1				*	*					
Above	1 to	8	0.06	0.10	0.14	0.25	0.40	0.60	1.00			
Above		6	0.075	0.12	0.18	0.80	0·48	0.75	1 · 20			
Above	6 to	10	0.09	0.15	0.22	0.36	0.58	0.90	1 · 50			
Above	10 to	18	0.11	0.18	0.27	0.43	0.70	$1 \cdot 10$	1.80			
Above	18 to	80	0.13	$0 \cdot 21$	0.38	0.52	0.84	1.80	$2 \cdot 10$			
Above	80 to	50	0.16	$0 \cdot 25$	0.39	0.62	1.00	1.60	$2 \cdot 50$			
Above	50 to	80	0.19	0.30	0.46	0.74	1.20	1 · 90	8.00			
Above	80 to	120	0.22	0.35	0.54	0.87	1.40	$2 \cdot 20$	8 · 50			
Above	120 to	180	0.25	0.40	0.63	1.00	1.60	$2 \cdot 50$	4 ∙00			
Above	180 to	250	0.29	0.46	0.72	1.15	1.85	2.90	4.60			
Above	250 to	815	0.32	0.52	0.81	1.80	$2 \cdot 10$	3·20	$5 \cdot 20$			
Above	815 to	400	0.36	0.57	0.89	1.40	$2 \cdot 30$	3·60	5.70			
Above	400 to	500	0.40	0.63	0.97	1.55	$2 \cdot 50$	4.00	6 · 30			

(Clause 5.1.1) All dimensions in millimetres

	FOI SIDE WILLIS	FOI SIGT Deptil
* Up to 0 ⋅ 25	+ 0.1	+ 0.15
Above 0 · 25	+ 0.15	+ 0.2

Nomina	l Size Ra	inge	e				Toleranc	e Zone		• •			05
			b11	h12	h13	h14	h15	h16	js13	js14	js15	js16	jsl
From	0-2 to	1	0.06						- 1		i - 1		
Above	1 to	8	0 • 065	0·10	0 · 14	- 0.25	-0.40	0.60	+0.070	+0.125	+0.20	+0.30	+0.
Above	8 to	6	-0.075	0 · 10	-0·18	0 · 30	0.48	-0.75	+0.080	+0.15	+0.24	+0.375	+0.0
Above	6 to	10	0.09		-0.22	-0.36	-0.58	0.90	+0.110	+0.18	+0.29	+0.45	+0.7
Above	10 to	18	0.11	0 · 18	0 · 27	0·43	0.70	—1·10	+0.132	+0.215	+0.35	+0.55	+0.8
Above	18 to	80	0 · 18	0 · 21	-0.33	0 · 52	0.84		+0.165	± 0.26	+0.42	+0.65	+1.0
Above	30 to	50	0 · 16	0·25	0 · 39	-0.62	1.00		+0.195	<u>+</u> 0·31	+0.50	+0.80	+1.2
Above	50 to	80	0 · 19	0 · 30	0 · 46	-0.74	1 · 20	1 · 90	+0.530	± 0.37	+0.60	+0.95	+1.5
Above	80 to	120		0 · 85	- 0·54		1 • 40	2.20	+0.270	<u>+</u> 0·435	+0.70	+1.10	+1.7
Above	120 to	180		0 • 40	0 - 63	1.00	-1.60	-2.50	+0.315	<u>+</u> 0·50	+0.80	+1.25	+2.0
Above	180 to	250	0·29	0 • 46	-0.72	1 · 15	1 · 85	2 · 90	+0.360	± 0.575	+0.925	+1.45	+2.8
Above	250 to	815	0.82	0 · 52	0,•81	1 · 30	-2·10		+0.402	±0.62	+1.05	+1.60	+2.6
Above	8 15 to	400	0 • 3;6	0.57	0,89	1 · 40	2· 3 0	3 ∙60	+0.445	+0.70	+1.15	+1.80	$\frac{-}{+2 \cdot 8}$
Above	400 to	500	0.40	0 · 63	0 · 97	1 · 55	2 ·50	4.00	+0.485	+0.775	+1·25	+2.00	+3.1

Table 2 — Tolerance Zones for External Dimensions (Clause 5.1.1) All dimensions in millimetres

SLS 379:1976

["

. .

Table 3- Tolerance Zones for Internal Dimensions

(Clause 5.1.1)

a sha an an an an

All dimensions in millimetres

Nominal Ran					Tolerand	e Zone		
		1	D 12	H 11	H 12	H 18	H 14	H 15
From 0)•2 to	ĩ		-		inter A <u>magina</u> A general pagan	. .	
Above	1 to	8	$^{+0\cdot 12}_{+0\cdot 02}$	+0.06	+0.10	+0.14	+0.25	+ 0·4 0
Above	8 to	6	+0.15 + 0.03	+0.075	+0.12	+0.18	+0.80	+0.48
Above	6 to	10	+0.19 + 0.04	+0.08	+0.15	+0.22	+0.86	+0.28
Above	10 to	18	$+0.23 \\ +0.05$	+0.11	+0.18	+0.27	+0.43	+0.70
Above	18 to	80	+0.275 + 0.065	+0.13	+0.21	+0.88	+0.2	+0.84
Above	30 to	50	+0.83 + 0.08	+0.16	+0.25	+0.89	+0.62	+-1.00
Above	50 to	80	+0·40 +0·10	+0.19	+0.30	+0+46	+0.74	+1.20
Above	80 to 2	120	+0.47 + 0.12	+0.22	+0.35	+0.54	+0.87	+1.4(
Above 1	20 to 1	80	+0.545 + 0.145	+0.25	+0.40	+0.68	+1.00	+1.60
Above 1	80 oʻ2	50	+0.63 +6.17	+ 0•29	+0•46	+0•72	+1.15	+1•85
Above 2	50 to 8	15	+0.71 + 0.19	+0.32	+0.52	+0 ∙81	+1.80	+2.10
Above 8	15 to 4	00	+0.78 + 0.21	+0.36	+ 0.57	+0.89	+1.40	+2.80
Above 4	00 to 5	00	+0.86 + 0.23	+0.40	+0.63	+0.97	+1.55	+2.50

.....

ŧ

50

 \mathbb{R}^{\prime}

1

1

Table 4 — Eccentricity Limits

	Ec	centricity	Refer to	Reference dimensions
	of	with respect to	figure	for tolerance
	Width across flats	Shank or thread if threaded to head	1, 2, 11, 12, 17, 18, 21, 22	Widths across flats
BOLTS & SCREWS	Head diameter	Shank or thread if threaded to head	5, 6, 7, 8.	Head diameter
SCREWS	Slot in head	Shank or thread if threaded to head	5, 6, 7, 8.	Shank or thread diameter
NUTS	Width across flats	Thread	8, 4, 9, 10, 18, 14, 15, 16, 19, 20, 28, 24, 25.	Width across flats
	Slot	Thread	9, 10, 15, 16, 24, 25.	Thread diameter

Table 6 — Preferred Property Classes for Nuts

Property Class of Nut*	4	5	6	8	10	12
For use with bolts of property class	4.6, 4.8	5.6, 5.8	6 ∙8	8.8	10.9	12.9
Proof load stress N/mm ^{2**}	400	500	600	800	1000	1200
Brinell hardness HB, Max.	802	802	802	302	353	853
Rockwell hardness HRC, Max.	80	30	80	80	86	86

* Nuts of a higher strength property class may substitute the nuts of a lower strength property class.

** The proof load is calculated by multiplying the proof load stress by the nominal stress area (A_s) of the corresponding bolt thread, where

$$A_g = \frac{\overline{\Lambda}}{4} (d_1 + d_3)^3$$

. . .

d. - basic pitch diameter

d. - basic minor diameter.

>

5

SDS 879 : 1976

1.0.1

.

Property	Mechanical Prop	erty				P	roperty	Class				
Ref. No.	*	•	8.6	4.6	4.8	5.6	5.8	6-8	8.8	9-8	10.9	12.9
1 and 2	ensile strength R _m N/mm ¹	nominal	800	: 4	00	5	00	600	800	900	1000	1200
	I	ninimum	380	400	420	500	<i>5</i> 20	-600	830	900	1040	1220
8	Brinell Hardness HB 1	ninimum	90	114	124	147	152	181	242	266	294	353
	п	aximum		242	-1	·]		266	819	842	862	409
4	Rockwell Hardness	HRB	52	67	71	79	82					
	min.	HRC						18	28	27	81	88
		HRB	1	.I	100	1	-1		~	•	- \	
	max.	HRC				i 1		28	84	86	89	44
5	Yield Stress,	nominal	180	240	840	800	420	480				
	R N/mm ² -	ninimum	190	240	840	800	420	480	·			
6		nominal			·	1	' <u></u> ;		640	720	900	1080
	permanent set limit R ₆₋₁ N/mm ²	min.				1			660	720	940	1100
7	Stress under	Sp/Re	0.94	0.94	0.91	0.94	0.91	0 91	0.91	0.91	0.88	0.88
	proof load, Sp -	N/mm²	180	225	810	280	380	440	600	650	830	970
8	Elongation after fracture A _s	min. %	25	25	14	20	10	8	12	10	9	8
9	Strength under wedge	e loading	The val under 2	lues for fu above.	ll size bo	lts should	equal the	minimun	n values	for tens	ile streng	h shown
10	Impact strength min kgf. m/em ²								6	5	4	8
11	Head soundness		No frac	ture		, , , , , , , , , , , , , , , , , , , 		 •••		1		
12	Decarburization at ro thread	ot of	Depth :	not more	than 1/10	H ₁ (see F	igure 26)	· · · · · · · · · · · · · · · · · · ·			<u></u>	
	Non-decarburised zon	e	Depth	not less t	han 2/8 H	1 (see Fig	ure 26)					

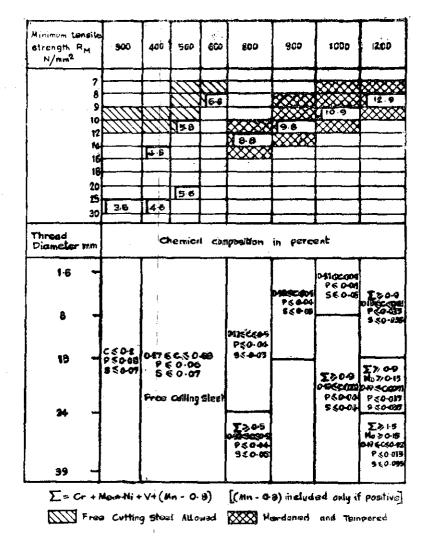
.

Table 5 - Preferred Property Classes for Bolts and Screws

....

Minimum tensile	N/mm²	800	400	500	600	700	800	900	1900	1200	1400
strength R *	1000 lbf/in²	45	 : 60 	 74 	 90 	100 100	 120 		150	180	200
	7						/ 	_			
	8						· · · · · · · · · · · · · · · · · · ·				
	9				6.	8				1	2.9
	10						1		10	<u>). 8</u>	
	12			5-1	<u> </u>			9.8	3		
Minimum	14						8.8	·			
elongation after fracture	16		4.	8							
fracture A _s %	18										
	20										
	22			5	6						
	25		4.	6							
	30	3	6								

Table	7	System	of	Coordinates
-------	---	--------	----	-------------


Second figure of symbol	•6	.7	·8	•9
$\frac{Minimum yield stress}{Minimum tensile strength R_{m}} \times 100 \text{ or } \frac{R_{0.2}}{R_{m}} \times 100\%$	60	70	80	90

* The figures shown for 1000 lbf/in² are rounded values and not exact conversions of the corresponding values for N/mm². The differences, due to rounding, do not indicate differences in quality.

Values in N/mm² are only to be used for metric series bolts and screws.

Values in lbf/in² are only to be used for inch series bolts and screws.

)

Table 8 --- Steels Suitable for Bolts and Screws

Note — For all classes in the Table, except for class $3 \cdot 6$ a steel of higher grade may be used provided that the bolts produced meet all the requirements of the desired grades.

ľ					Maximum	ı impurities	
	Designation	Cu	Рр	Zn	Fe	Total excluding Fe	Mainly used for
	CuZn 40 Pb 3	56.0-59.0	2.0-3.5]	0.35	0.7	General high speed ma- chined parts
	CuZn 39 Pb 2	57 • 060 • 0	$1 \cdot 0 - 2 \cdot 5$		0.85	0.7	Hot forgings appropriate for free cutting
	CuZn 36 Pb 3	60.0-68.0	2·5-8·7;	T H E	0.85	0.5	General high speed ma- chined parts with some cold formability
	CuZn 40 Pb	59.0-62.0	0.3-0.8	R E M	0.2	0.3	General application with reasonable machinability
	CuZn 38 Pb 1	59.0-63.0	0 · 51 · 5	A I N D E R	0.2	0.3	Reasonable machinability with sufficient ducti- bility to permit a degree of cold bending and cold forming
	CuZn 86 Pb 2	61.0-64.0	1.0-2.0		0.2	0.8	Good machinability with sufficient ductility to permit a degree of rivet- ting heading and cold forming

Table 9-Brasses and Aluminium Alloys Suitable for Bolts, Screws and Nuts

9·2 --- Aluminium Alloys

9.1 Brasses

>

Design					Chemic	al Comp	osition				Mainly
Designation	Cu	Mg	Si	Fe	Mn	Zn	Cr	Ti+Zr	Remarks	Al	used for
Al - Mg5 min. max.		4.5							(Mn+Cr) min: 0·1 max: 0·5	T H E	turned parts
Al - Cu4 Si Mg min. max.	3·8 5·0	0·2 0·8	0.5	0.7	0·8 1·2	0.2			$\begin{array}{l} Ni: 0.2 max \\ Ti + Zr + Cr \\ 0.3 max \end{array}$	R E M A I N D E R	suitable for a degree of cold forming

÷

Property	С	hemical composition (check analysis)	
class	Carbon max. per cent	Manganese min. per cent	Phosphorous max. per cent	Sulphur max. per cent
4*	0 · 50		0.11	0.150
6*	0 · 50		0.11	0.150
8*	0.58	0.80	0~06	0.150
10*	0.58	0.45	0.02	0.050

Table 10 - Steels Suitable for Nuts

* Use of free-cutting steel is allowed for these two classes only. In such cases: the following maximum Sulphur, Phosphorous and Lead contents are permissible-

Sulphur	0·84	per cent
Phosphorous	0.12	per cent
Lead	0.85	per cent

Å.

Test Group	Property Ref. No. (see Table 5)	Mechanical Property		e to Method of test	Test Progra	amme A	Test Program	nme B
					Machined Test Bolts with a Sh than the Str	ank Area less		
					Property	classes	Property of	lasses
			Clause	Test	3.6, 4.6, 4.8, 5.6, 5.8, 6.8		$3 \cdot 6, 4 \cdot 6, 4 \cdot 8, 5 \cdot 6, 5 \cdot 8, 6 \cdot 8$	8.8, 9.8, 0.9, 2.9
	1	Tensile strength	9.2.1	Tensile test	@	@	@	@
	2	Tensile strength Rm	9.2.2	Tensile test	·		@	@
I	3	Brinell hardness HB	9.2.8	Brinell hard- ness test	*	*	*	*
▲ 1	4	Rockwell hardness HR	9.2.4	Rockwell hardness test	0	0	0	0
	5	Yield point stress Re	9.2.1	Tensile test	@			
н	6	Stress at permanent set limit R _{0.2}	9.2.1	Tensile test	••••••••••••••••••••••••••••••••••••••	@		
	7	Stress under proof load	9 · 2 · 5	Proof load test			@	@
III	8	Percentage elonga- tion after fracture	9-2-1	Tensile test	Ø	@		
.4.4.	ŧ 9	Strength under wedge loading	9.2.6	Wedge load- ing te t	· ·		@	@
IV	10	Impact strength	9-2-7	Impact test		·@		
:IV	11	Head soundness	9:2.8	Head sound- ness test	œ	*	0	0
: V	12	Decarburization	9.2.9	Decarburiza-		@		@

.

. . .

Table 11 --- Test Programmes A and B

57

.

-

Nominal	Pitch	Nominal						roperty clas	s I 8·8	9.8	10-9	12.9
thread diameter	of the thread	stress area	<u> </u>	4.6	4.8	5.6	5.8	6.8	0.0			
mm	mm	mm²	·		M	inimum ulti	mate tensile	load (A ×	<u>Rm)</u> , N			
1.6	0.35	1.27	420	510	580	630	660	760	1 050	1 140	1 320	1 550
2	0.4	2.07	680	880	870	1 030	1 080	1 240	1 720	1 860	2 150	2 530
2.5	0.45	8 - 39	1 120	1 360	1 420	1 700	1 760	2 080	2 810	8 050	8 580	4 140
3	0.5	5.08	1 660	2 010	2 110	2 510	2 620	3 020	4 170	4 530	5 230	6 140
8.5	0.6	6-78	2 240	2 710	2 850	· 3 390	3 530	4 070	5 680	6 100	7 050	8 270
4	0.7	8.78	2 900	8 510	3 690	4 380	4 370	5 270	7 290	7 900	9 180	10 700
5	0.8	14.2	4 690	5 680	5 960	7 100	7 380	8 520	11 800	12 800	14 800	17 800
6	1	20.1	6 630	8 040	8 4 4 0	10 000	10 400	12 100	16 700	18 100	20 900	24 500
7	1	28.9	9 540	11 600	12 100	14 400	15 000	17 300	24 000	26 000	80 100	85 800
8	1.25	36.6	12 100	14 600	15 400	18 300	19 000	22 000	30 400	32 900	38 100	44 600
10	1.5	58.0	19 100	23 200	24 400	29 000	80 200	34 800	48 100	52 200	60 300	70 800
12	1.75	84.3	27 800	88 700	35 400	42 200	43 800	50 600	70 000	75 900	87 700	108 000
14	2	115	38 000	46 000	48 300	57. 500	59 800	69 000	95 400	104 000	120 000	140 000
16	2	157	51 800	62 800	65 900	78 500	81 600	94 000	130 000	141 000	168 000	192 000
18	2.5	192	63 400	76 800	80 600	96 000	99 800	115 000	159 000	_	200 000	234 000
20	2.5	245	80 800	98 000	108 000	122 000	127 000	147 000	203 000		255 000	299 000
20 22	2.5	308	100 000	121 000	127 000	152 000	158 000	182 000	252 000	_	815 000	870 000
22 24	8	358	116 000	141 000	148 000	176 000	184 000	212 000	293 000	·	· 367 000	481 000
	8	459	152 000	184 000	198 000	280 000	289 000	275 000	881 000		477 000	560 000
27	0 8.5	409 561	185 000	224 000	286 000	280 000	292 000	887 000	466 000	· ·	588 000	684 000
80		694	229 000	278 000	292 000	847 000	861 000	416 000	576 000	-	722 000	847 000
88	8.5	084 817	229 000	327 000	343 000	408 000	425 000	490 000	678 000	: 	850 000	997 0 00
86	4					488 000	508 000	586 000	810 000		1 020 000	1 200 000
89	4	976	322 000	390 000	410 000	480 000	300 000	200 000				

Table 12-Minimum ultimate tensile Loads - ISO Metric Coarse Thread

- -

....

-1

Nominal	Pitch	Nominal				.		Property clas			ا مما		
thread	of the thread	stress area	8.6	4.6	4.8	5.6	5.8	6.8	8.8	9.8	10.9	12.9	
diameter mm	mm	mm ²	Proof load ($A_s imes R_{rq}$), N										
8 10 12	$1 \\ 1 \cdot 25 \\ 1 \cdot 25$	$ \begin{array}{r} 89 \cdot 2 \\ 61 \cdot 2 \\ 92 \cdot 1 \end{array} $	$\begin{array}{c} 12 & 900 \\ 20 & 200 \\ 30 & 400 \end{array}$	$\begin{array}{c} 15 & 700 \\ 24 & 500 \\ 86 & 800 \end{array}$	16 500 25 700 38 700	19 600 30 600 46 000	20 400 31 800 47 900	23 500 36 700 55 300	$\begin{array}{rrrr} 82 & 500 \\ 50 & 800 \\ 76 & 400 \end{array}$	85 800 55 100 82 900	40 800 63 600 95 800	47 800 74 700 112 000	
12 14 16	1.5 1.5	125 167	41 200 55 100	50 000 66 800	52 500 70 100	62 500 88 500	65 000 86 800	75 000 100 000	104 000 139 000	112 000 150 000	180 000 174 000	152 000 204 000	
18 20	1·5 1·5	216 272	71 300 89 800	86 400 109 000	90 700 114 000	108 000 136 000	112 000 141 000	180 000 163 000	179 000 226 000		225 000 283 000	264 000 332 000	
22 24	$\frac{1\cdot 5}{2}$	338 384	$\frac{110\ 000}{127\ 000}$	$\begin{array}{c} 133 \ 000 \\ 154 \ 000 \end{array}$	140 000 161 000	166 000 192 000	173 000 200 000	200 000 230 000	276 000 319 000		846 000 399 000	406 000 469 000	
27 80 88	2 2 2	496 621 761	$\begin{array}{ccc} 164 & 000 \\ 205 & 000 \\ 251 & 000 \end{array}$	194 000 248 000 304 000	$\begin{array}{ccc} 208 & 000 \\ 261 & 000 \\ 820 & 000 \end{array}$	248 000 310 000 880 000	258 000 828 000 896 000	298 000 378 000 457 000	412 000 515 000 632 000		516 000 646 000 791 000	$\begin{array}{cccc} 605 & 000 \\ 758 & 000 \\ 928 & 000 \end{array}$	
86 89	8 3	865 1 080	285 000 840 000	346 000 412 000	363 000 438 000	482 000 515 000	450 000 \$86 000	519 000 618 000	718 000 855 000		900 000 1 070 000	1 050 000 1 260 000	

Table 13 - Minimum Ultimate Tensile Loads - ISO Metric Fine Thread

Table	14	- Proof	Loads	- ISO	Metric	Coarse	Thread

Nominal	Pitch	Nominal					roperty class 5 · 8	6.8	8.8	9.8	10.9	12.9
thread	of the thread	stress area	3.6	4.6	4∙8	5.6	5.8	0.9	0.0			
diameter mm	mm	mm²	·			Proc	f load (A _s \times 8	5p), N				
1.6	0.85	1.1.27	230	280	390	360	480	560	760	830	1 050	1 28
2	0.4	2.07	. 370	470	640	580	790	910	1 240	1 350	1 720	2 01
2 2·5	0.45	3.39	610	760	1 050	950	1 290	1 490	2 080	2 200	2 810	8 29
3	0.5	5.03	910	1 180	1 560	1 410	1 910	2 210	3 020	3 270	4 180	4 88
а 8-5	0.6	6.78	1 220	1 530	2 100	1 900	2 580	2 980	4 070	4 410	5 630	6 58
4	0.7	8.78	1 580	1 980	2 720	2 460	3 840	3 860	5 270	5 710	7 290	8 52
4 5	0.8	14.2	2 560	3 200	4 400	3 980	5 400	6 250	8 520	9 230	11 800	18 80
5 6	1	1∓ 2 20 · I	3 620	4 520	6 230	5 680	7 640	8 840	12 100	13 100	16 700	19 50
7		28.9	5 200	6 500	8 960	8 090	11 000	12 700	17 300	18 800	24,000	28 00
8	1.25	36.6	6 590	8 240	11 400	10 200	13 900	16 100	22 000	23 800	30 400	85 50
	1.23	58.0	10 400	13 000	18 000	16 200	22 000	25 500	34 800	87 700	48 100	56 80
10	1.75	84.3	15 200	19 000	26 100	28 600	82 000	37 100	50 600	54 800	70 000	81 80
12		115	20 700	25 900	35 600	82 200	43 700	50 600	69 000	74 800	95 500	112 00
14	2	115	28 300	35 300	48 700	44 000	59 700	69 100	94 200	102 000	130 000	152 00
16	2.5	192	28 300 34 600	43 200	59 500	58 800	78 000	84 500	115 000		159 000	186 00
18	2.5	245	44 100	55 100	76 000	68 600	93 100	108 000	147 000	_	203 000	288 00
20	2.5	303	54 500	68 200	93 900	84 800	115 000	133 000	182 000		252 000	294 0
22		353	63 500	79 400	109 000	98 800	134 000	155 000	• 212 000		298 000	842 00
24	3		82 600	108 000	142 000	128 000	174 000	202 000	275 000		381 000	445 00
27	3	459 [82 600 101 000	126 000	142 000	120 000	213 000	247 000	387 000		466 000	544 00
30 80	3·5	561	101 000	126 000	215 000	194 000	264 000	305 000	416 000	_	570 000	678 00
33	8.5	694		136 000	213 000	229 000	310 000	359 000	490 000	_	678 000	792 00
36	4	817	147 000		_	223 000	371 000	429 000	586 000	_	810 000	947 00
39	4	976	176 000	220 000	303 000		011 000					

.

Nominal thread	Pitch of the	Nominal stress	3.6	4.6	4.8	5.6	Property 5 · 8	y class 6 · 8	8.8	9+8	10.9	12.9
diameter mm	thread mm	area mm²				·	Proof load	($\mathbf{A_s} \times \mathbf{S_p}$), N	Ň		<u>. </u>	
8 10 12	$1 \\ 1 \cdot 25 \\ 1 \cdot 25 \\ 1 \cdot 25$	$39 \cdot 2$ 61 · 2 92 · 1	7 060 11 000 16 600	8 820 13 800 20 700	12 200 19 000 28 600	11 000 17 100 25 800	14 900 23 300 35 000	$\begin{array}{c} 17 \ 200 \\ 26 \ 900 \\ 40 \ 500 \end{array}$	23 500 36 700 55 300	25 500 39 800 59 900	$\begin{array}{c} 32 \ 500 \\ 50 \ 800 \\ 76 \ 400 \end{array}$	38 000 59 400 89 300
14 16 18	1.5 1.5 1.5 1.5	$125 \\ 167 \\ 216$	$\begin{array}{cccc} 22 & 500 \\ 30 & 100 \\ 38 & 900 \end{array}$	28 100 37 600 48 600	38 800 51 800 67 000	35 000 46 800 60 500	47 500 68 500 82 100	55 000 73 500 95 000	75 000 100 000 130 000	81 200 109 000	104 000 139 000 179 000	$\begin{array}{c} 121 & 000 \\ 162 & 000 \\ 210 & 000 \end{array}$
20 22 24	$1 \cdot 5$ $1 \cdot 5$ 2	272 333 384	49 000 59 900 69 100	61 200 74 900 86 400	84 300 103 000 119 000	76 200 93 200 108 000	$\begin{array}{c} 103 \ 000 \\ 126 \ 000 \\ 146 \ 000 \end{array}$	120 000 146 000 169 000	$\begin{array}{cccc} 163 & 000 \\ 200 & 000 \\ 230 & 000 \end{array}$	·	$\begin{array}{cccc} 226 & 000 \\ 276 & 000 \\ 319 & 000 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
27 30 88	2 2 2	496 621 761	89 300 112 000 137 000	112 000 140 000 171 000	154 000 192 000 286 000	139 000 174 000 213 000	188 000 236 000 289 000	218 000 278 000 385 000	298 000 373 000 457 000	 	$\begin{array}{c} 412 \ 000 \\ 515 \ 000 \\ 632 \ 000 \end{array}$	481 00 602 00 738 00
86 89	3	865 1 030	156 000 185 000	195 000 232 000	268 000 319 000	242 000 288 000	829 000 891 000	381 000 453 000	519 000 618 000		718 000 855 000	888 00 999 00

•

Table 15 -- Proof Loads -- ISO Metric Fine Thread

.

Nominal	Pitch of	Tensile		Pr	operty Class	of Nuts		
Thread Diameter	Thread	Stress Area of Test	4	5	6	8	10	12
mn	mm	Mandrel mm ²			Proof load	, N		
1.6	0.85	1.27	500	620	750	980	1 220	1470
2	0.4	$2 \cdot 07$	810	1 010	1 180	1 620	2 010	2 450
$2 \cdot 5$	0.45	8.39	1 320	1 670	1 960	2 650	3 880	3 920
3	0.5	5.08	1 960	$2450\frac{4}{5}$	2 940	8 920	4 900	5 880
8.5	0.6	6.78	$2^{-}650$	3 300	3 970	5 300	6 670	7 990
4	0.7	8.78	3 430	4 310	5 150	6-860	8 580	10 300
5	0.8	14.2	5 - 590	6 960	8 340	11 200	13 900	16 700
6	1	20.1	7 850	9-810	11 800	15 700	19-600	23 500
7	1	$28 \cdot 9$	11 300	14 200 ¹	17 000	22 600	$28 \ 400$	34 000
8	1.25	36+6	14 200	18 000	21 600	28 500	35 800	42 200
10	$1 \cdot 5$	58.0	$22 \ 600$	$28 \ 400$	34 300	45 100	56-900	68-200
12	1 75	84.3	32 800	41 300	49 500	65 700	82 400	98-100
14	2	115	45 100	56 400,	67 700	90-200	103-000	135 000
16	2	157	. 61 800	77 00 0	92 200	124 000	154 000	184 000
18	$2 \cdot 5$	192	$75 \ 500$	94 10 0	113 000	151 000	188-000	226 000
20	$2 \cdot 5$	245	96 100	120 000	144 000	192-000	240 000	288 000
22	$2 \cdot 5$	303	119.000	148 000	178 000	237 000	297-000	357 000
24	8	353	138 000	178 000	208 000	277 000	346 000	415 000
27	3	459	180 000	226 000	$271 \ 000$	360-000	450 000	589 000
30	8.5	561	$220 \ 000$	275 .000	330-000	489-000	550-000	660-000
33	8.5	694	$273_{-}000$	840 000	408-000	544-000	680-000	817 000
36	4	817	321 000	400-000	481 000	640-000	801-000	961-000
39	4	976	382 000	479 000	574 000	765-000	957 000	1147 000

Table 16 - Proof Load for Nuts with ISO Metric Coarse Threads

 $\mathbf{62}$

Nominal	Pitch of	Tensile		·····	Property clas	is of nuts		<u></u>
thread diameter	thread	strength a rea of test	4	5	6	8	10	12
mm	mm	mandrel mm	au	1	Proof load, 2	N	<u> </u>	
8	1	39-2	15 400	19 200	23 000	30 400	38 200	46 10
10	1.25	$61 \cdot 2$	23 500	80-000	36 300	48 100	39 800	72 10
12	1.25	$92 \cdot 1$	3 6-300	45 100	53 900	72 500	90-200	108 06
14	1.5	125	49-000	61 800	73 600	98-100	123 000	147 00
16	1.5	167	$65 \ 700$	81 900	98 100	131 000	164 000	196-06
18	J - 5	216	84-300	106 000	127 000	169 000	212 000	253 00
20	1.5	272	107-000	133_000	160 000	214 000	267 000	320 00
22	$1 \cdot 5$	333	130 000	163 000	19 000	261 000	827 000	392-00
24	2	384	151 000	188 000	226 000	301 000	377 000	451-00
27	2	496	195-000	243 000	292 000	389-000	486 000	583 00
80	2	621	243 000	304 000	366 000	487 000	609-000	731 00
83	2	761	298 000	378 000	447 000	596-000	746 000	986-00
36	3	865	339-000	424 000	509 000	679-000	848 000	1020 00
89	3	1030	407 000	509 000	605 000	809 000	1010 000	1216 00

Table 17-Proof Load for Nuts with ISO Metric Fine Threads

war in the second se

·· •· ·

.

÷.

* •

7 7

Lot Size				Characteristi		·	·	1 d3	Dimensional Characteristics											
		Sample	Sample size	Cumulative Sample	Ac	Re	Ac	Re	Sample	Sample Size	Cumulative Sample	I	Black F	asteners			astenera	steners		
			Size	Size				and the second second		Size	Size	Major defect Ac Re		Minor defect		Major defect		Minor defect		
														Ac	Re	Ac Re		Ac Re		
			AQL			<u>6</u> .	5	1	0				4	0	6	5	2	5	4	•0
	(1)		(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)
Up	to	100	First Second	20 20	20 40	2 6	5 7	0 1	2 2	First Second	8 8	8 16	0 1	2 2	0 8	3 4	0 1	2 2	0 1	2 2
101	to	300	First Second	32 32	82 64	3 8	7 9	0 1	2	First Second	18 18	13 26	0 3	3 4	1 4	4 5	01	2 2	0 8	3 4
301	to	500	First Second	$\begin{array}{c} 50\\ 50\end{array}$	50 100	$5 \\ 12$	9 13	0 3	3 4	First Second	$\begin{array}{c} 20\\ 20\end{array}$	20 40	1 4	4. 5	2 6	5 7	03	3 4	1 4	4 5
501	to	1 000	First Second	80 80	80 160	7 18	11 19	1 4	• 4 5	First Second	32 32	32 64	$\frac{2}{6}$	5 7	3 8	7 9	1 4	4. 5	2 6	57
1 001	to	8 000	First Second	$125 \\ 125$	$\begin{array}{c} 125 \\ 250 \end{array}$	11 26	$\begin{array}{c} 16 \\ 27 \end{array}$	2 6	5	First Second	50 50	50 100	3 8	7 9	5 12	9 18	2 6	5 7	3 8	7 9
3 001	to	10 000	First Second	200 200	200 400	$\begin{array}{c} 11 \\ 26 \end{array}$	16 27	3 8	7 9	First Second	80 80	80 160	$5 \\ 12$	9 13	7 18	11 19	3 8	7 9	5 12	9 18
10 001	to	85 000	First Second	815 815	315 680	11 26	$\frac{16}{27}$	5 12	ົງ 9 13	First Second	125 125	$\begin{array}{c} 125 \\ 250 \end{array}$	7 18	11 19	11 26	$16 \\ 27$	5 12	9 13	7 18	11 19
Over		85 000	First Second	500 500	500 1000	11 26	$\frac{16}{27}$	7 18	⁵ 11 19	First Second	200 200	200 400	11 26	16 27	11 26	16 27	7 18	11 19	11 26	16 27

.

Table 18 Scale of Sampling and	Criteria for Conformity for Normal Inspection
Those to - Benie of Sumpling	content for contenting for reering mopoetion

64

.

Lot Size			Sample	Sample Sample Cumulative A				Ac	Re	Sample	Sample	Cumulative			ial Grad		Descie	cision or Semi Precision Grade			
			, sample	Size	Sample Size	Ac	Re	AC		campic	Size	Sample Size	Ma def	 jor	Min	Minor defect		Major defect		ion Grad	
		{	[[[ĺ					Ac	Re	Ac	Re	Ac	Re	Ac	Re		
		AQL			4-0		0.65		·			2.5		4.0		1.5		2.			
	(1)		(2)	(8)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(18)	(14)	(15)	(16)	(17)	(18)	(19)	
Up	to	100	First Second	20 20	$\begin{array}{c} 20\\ 40\end{array}$	1 4	4 3	0 1	2 2	First Second	8 8	8 16	0 1	2 2	0 1	2 2	0 1	2 2	0 1	2 2	
101	to	300	First Second	32 32	32 64	$\frac{2}{6}$	5 7	0 1	$\frac{2}{2}$	First Second	13 13	$\begin{array}{c} 18\\ 26\end{array}$	0 1	2 2	0 3	3 4	0 1	2 2	0 1	22	
801	to	30 0	First Second	50 50	50 100	8 8	7 9	0 1	2 2	First Second	20 20	20 40	0 8	8 4	1 4	4 5	0 1	2 2	0 3	8 4	
501	to	1 000	First Second	80 80	80 160	$\frac{5}{12}$	9 13	0 3	3 4	First Second	82 82	82 64	1 4	4. 5	2 6	5 7	0 8	8 4	1 4	4 5	
1 001	to	8 000	First Second	$125 \\ 125$	$\begin{array}{c} 125\\ 250\end{array}$	7 18	11 19	1 4	4 5	First Second	50 50 -	50 100	$\frac{2}{6}$	5 7	- 3 - 8	7 9	1	4 5	2 6	- 5 7	
S 001	to 1	0-000	First Second	200 200	200 400]1 26	16 27	$\frac{2}{6}$	5 7	First Second	- 80 80	80 160	3 8	7 9	5 12	9 18	2 6	5 7	8 8	7 9	
10 001	to 3	5 000	First Second	315 315	815 680	11 26	16 27	8 8	7 9	First Second	125 125	$\begin{array}{c} 125\\ 250\end{array}$	$\frac{5}{12}$	9 18	7 18	11 19	3 8	7	5 12	9 13	
Over	3	5 000	First Second	500 500	500 1000	11 - 26	16 27	5 12	9 13	First Second	200 200	200 400	7 18	11 19	11 26	16 27	5 12	9 13	18	11 19	

Table 20 - Scale of Sampling and Criteria for Conformity for Tightened Inspection

10 65

x

				Visual Ch	aracteristics			Du	Duds Dimensional Characteristics											
Lot Size								Re	Sample	Sample Size	Sample		Commer	cíal Grad	e	Previsio	n or Semi	Precisio	recision Grade	
		Sample	Sample Size	Cumulative Sample Size	Ac	Re	Ac					e Major defect		Minor defect		Major defect		Minor defect		
]	Size			ļ				Size	Ac Re		Ac Re		Ac Re		Ac Re	
			AQL			6.	5	1	•0			*	4	0	6	5	2.	5	4	•0
	(1)		(2)	(8)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)
$\mathbf{U}\mathbf{p}$	to	100	First Second	18 18	13 26	1 4	4 5	0 1	2 2	First Second	5 5	5 10	0 1	2 2	0 1	2 2	· 0 · 1	2 2	0 1	2 2
101	to	300	First Second	20 20	20 40	2 6	5 7	01	2 2	First Second	8 8	8 16	0 1	2 2	0 3	8 4	0 1	2 2	0 1	2 2
801	l to	500	First Second	32 32	82 64	8 8	7	0 1	2 2	First Second	18 18	18 26	0 3	8 4	1 4	4 5	0 1	2 2	0 3	8 4
301	l to	1 000	First Second	50 50	50 100	$\frac{5}{12}$	9 18	0 3	8 4	First Second	20 20	20 40	1 4	4 5	2 6	5 7	0 3	8 4	1 4	4 5
1 001	l to	3 000	First Second	80 80	80 160	7 18	11 19] 4	4 5	First Second	82 82	82 64	2 6	5 7	8 8	7 9	1 4	4 5	2 6	5 7
8 001	to 1	0 000	First Second	$125 \\ 125$	125 250	$\begin{array}{c} 11\\ 26\end{array}$	16 27	2 6	5	First	50 50	50 100	3 8	7 9	5 12	9 18	2 6	$\frac{5}{7}$	8 8	7 9
10 001	to 3	5 000	First Second	200 200	200 400	$\begin{array}{c} 11 \\ 26 \end{array}$	16 27	3 8	9	First Second	80 80	80 160	5 12	9 13	7 18	11 19	3 8	7 9	5 12	- 9 18
C)ver 3	5 000	First Second	815 815	815 680	11 26	16 27	5 12	9 18	First Second	125 125	$\begin{array}{c} 125 \\ 250 \end{array}$	7 18	11 19	$\begin{array}{c} 11 \\ 26 \end{array}$	16 27	5 12	9 18	7 18	11 19
				Note J	For most of	the sau	ı mpling	plans g	iven in	this tab	le the L7	PD values	are less	than	1 20 per o	ent.	1			

Table 21 -- Scale of Sampling and Criteria for Conformity for Reduced Inspection

~ .

APPENDIX A LIMITS OF SURFACE DISCONTINUITIES (Given as a guide only)

▲ - 1 Bolts and Screws

- A 1.1 Cracks—Quench cracks or forging cracks of any depth, any length, or in any location, are not permitted. (See Figs. 36 and 37).
- A 1.2 Laps in Screw Threads Laps of any depth and any length which (a) originates in the root of the screw thread, or (b) originates on the flank, traverse toward the interior, and extend in depth below the pitch line of the bolt or screw, or (c) originates below the pitch line on the pressure flank and traverse toward the major diameter, are not permitted. (This requirement is not applicable to tapping screws having spaced threads). (See Fig. 38).

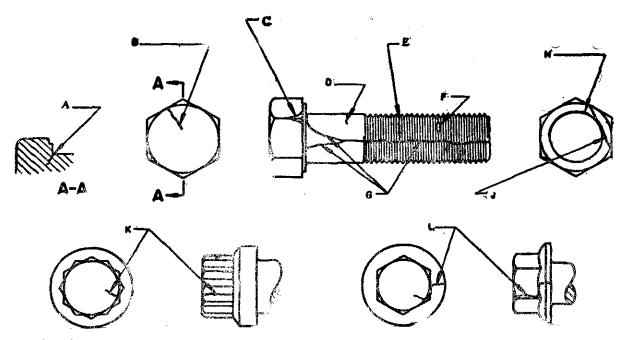
A-1.3 Folds

- A 1.3.1 Folds located in internal corners at or below the bearing surface, for example, in the fillet at the junction of head and shank, are not permitted.
- A ~ 1.3.2 Folds located at the intersection of the flange periphery and bearing surface of flanged bolts and screws, and project below the bearing surface, are not permitted. (See Fig. 39).
- **A-1.4** Seams Seams in the shanks of bolts, screws, and studs shall not exceed (a) an open width at the surface of 0.13 mm for sizes 6 mm to 12 mm inclusive and 0.25 mm for sizes 13 mm to 25 mm inclusive and (b) a depth of 0.015D + 0.10 mm for sizes 6 mm to 16 mm and 0 030D mm for sizes over 16 mm; where **D** is the nominal size of the bolt or screw. (see Fig. 40).

A = 1.5 Bursts

A - 1.5.1 Bursts in the flats of hex bolts and screws shall not exceed a width or an open depth

of 0.25 + 0.025D mm, where D is the nominal bolt or screw size in millimetres. In addition, no bursts shall extend into the bearing surface.

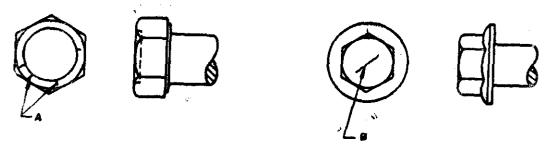

A - 1.5.2 Flanges of bolts and screws shall not have more than one burst with a width greater than 0.13 + 0.020 F mm or an open depth greater than 0.08 + 0.012 F mm, and this one burst shall not exceed a width of 0.25 + 0.040 F mm or an open depth of 0.15 + 0.024 F mm where F is the nominal flange diameter in millimetres.

- **A 1.5.3** Bursts at the periphery of round head style screws shall not exceed an open width or depth of 0.25 + 0.025D mm, where D is the nominal screw size in millimetres. (See Fig. 41).
- A 1.6 Shear Failure Shear failure on flanged bolts and screws shall not exceed a width of 0.5 mm for a depth greater than 0.030F, where F is the nominal flange diameter in inches. (See Fig. 41).
- A 1.7 Voids on Bearing Surface Voids on the bearing surface of bolts and screws shall not exceed a depth of 0.25 mm and the combined area of all voids shall not exceed 5% of the specified minimum area of the bearing surface. (See Fig. 42).
- **A-1.8** Tool Marks Tool marks on the bearing surface shall not exceed surface roughness measurement of 3 μ m determined as the arithmetic average deviation from the mean surface. (See Fig. 43).
- A 1.9 Nicks and Gouges Shall not interfere with gauging if found in threaded portions.

A-2 Nuts

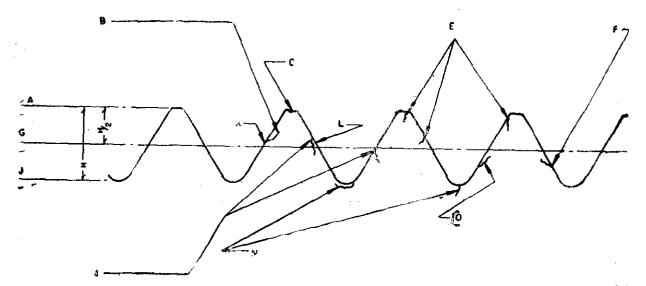
A-2.1 Cracks — Quench cracks or forging cracks of any depth, any length, or in any location are not permitted. (See Figs. 44 and 45).

- A-2.2 Seams Seams shall not exceed an open width at the surface of 0.13 mm for sizes 6 mm to 12 mm inclusive and 0.25 mm for sizes 13 mm to 25 mm inclusive. (See Fig. 46).
- **A 2.3** Bursts Bursts in flanged nuts shall not exceed a width of 0.13 + 0.020F mm or an open depth of 0.08 + 0.012F mm except that one burst may have a width no greater than 0.25 + 0.040F mm or an open depth no greater than 0.15 + 0.024F, where F is the nominal flanged diameter in millimetres. (See Fig. 47).
- A 2.4 Shear failures Shear failures on flanged nuts shall not exceed a width of 0.020F mm or a depth of 0.030F mm, where F is the nominal flange diameter in millimetres. (See Fig. 47).
- A 2.5 Folds Folds located at the intersection of the flange periphery and bearing surface of flanged nuts shall not project below the bearing surface. (See Fig. 48).
- A 2.6 Voids Voids on the bearing surface of nuts shall not exceed a depth of 0.25 mm and the combined area of all voids on the bearing surface shall not exceed 5% of the specified minimum area of the bearing surface. (See Fig. 49).
- A 2.7 Tool Marks Tool marks on the bearing surface shall not exceed a surface roughness measurement of 3 µm determined as the arithmetic average deviation from the mean surface. Tool marks on other surfaces are permissible. (See Fig. 50).
- A-2.8 Nicks and Gouges Shall not interfere with gauging if found in threaded portions.


SLS 37911976

A — Quench crack extending radially into fillet. B — Quench crack across top of head, usually an extention of crack in shank or side of head. C — Quench crack at corner of head D — Transverse quench crack E — Quench crack at root F — Quench crack, section at crest of thread missing G — Longitudinal Quench crack H — Quench crack, circumferential and adjacent to fillet J — Quench crack across washer face and to depth of washer face thickness K — Quench crack, at Root between points L — Quench crack

Fig. 36 - Typical Quench Cracks


20

1

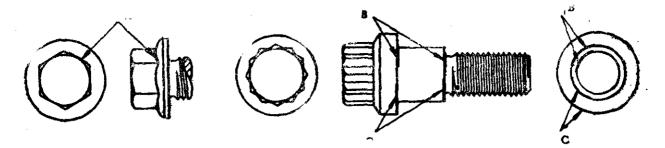

A - Forging cracks on raised periphery of indented head B - Forging crack on top of head

Fig. 37 - Typical Forging Cracks

A — Major diameter B — Laps originating above the pitch line on the pressure flank and with traverse directed toward the major diameter are permissible discontinuities C — Contour variation at major diameter is permissible E — Laps originating on either flank and with traverse directed toward the interior of the product and with a depth that does not extend below the pitch line are permissible discontinuities F — Laps originating on non-pressure flank with traverse directed toward major diameter are permissible discontinuities G — Pitch diameter J — Minor diameter K — Pressure flank L — Non-pressure flank M — Laps originating on either flank and with traverse directed toward the interior and with a depth extending below the pitch line are non-permissible discontinuities N — Laps originating in root of thread are non-permissible discontinuities N — Laps originating in root of thread are non-permissible discontinuities.

Fig. 38 -- Discontinuities in External Screw Threads

A — Fold B — Fold at interior corner C — Fold at exterior corner Fig. 39 — Typical Folds

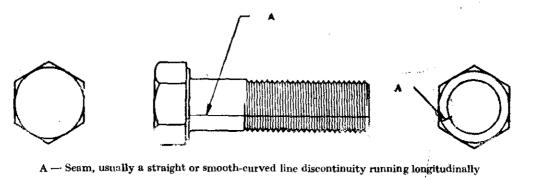
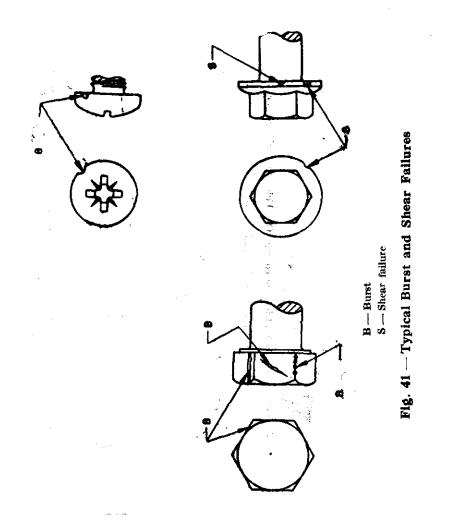
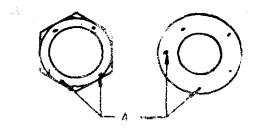
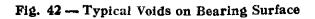
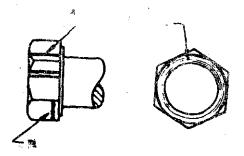



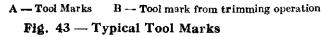
Fig. 40 --- Typical Seam


T

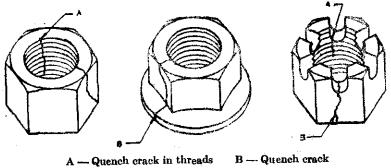
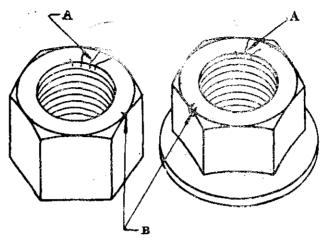
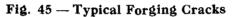
SLS 379:1976

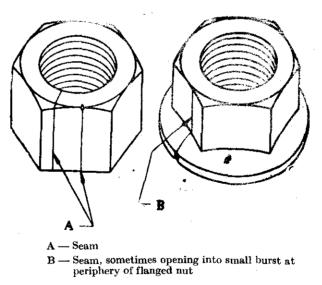


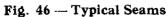

- -

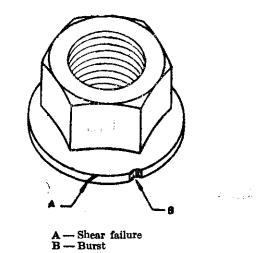

74

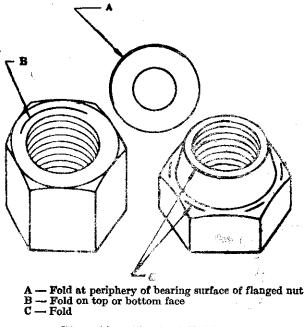
A - Voids

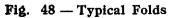





Fig. 44 — Typical Quench Gracks


1


 $\label{eq:alpha} \begin{array}{l} \mathbf{A} \rightarrowtail \mathbf{Forging} \mbox{ cracks in top or bottom face} \\ \mathbf{B} \rightarrowtail \mathbf{Forging} \mbox{ cracks at intersection of face and flat} \end{array}$





1

77

----- N

SL9 379 : 1976

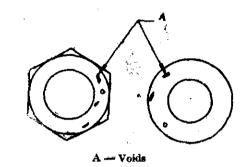


Fig. 49 - Typical Voids on Bearing Surfaces

- $A \rightarrow Tool$ marks on bearing surface
- B Tool marks from trimming operation
- C --- Tool marks

Fig. 50 --- Typical Tool Marks

SLS CERTIFICATION MARK

The Sri Lanka Standards Institution is the owner of the registered certification mark shown below. Beneath the mark, the number of the Sri Lanka Standard relevant to the product is indicated. This mark may be used only by those who have obtained permits under the SLS certification marks scheme. The presence of this mark on or in relation to a product conveys the assurance that they have been produced to comply with the requirements of the relevant Sri Lanka Standard under a well designed system of quality control inspection and testing operated by the manufacturer and supervised by the SLSI which includes surveillance inspection of the factory, testing of both factory and market samples.

Further particulars of the terms and conditions of the permit may be obtained from the Sri Lanka Standards Institution, 17, Victoria Place, Elvitigala Mawatha, Colombo 08.

Printed at SLSI (Printing Unit)

SRI LANKA STANDARDS INSTITUTION

The Sri Lanka Standards Institution (SLSI) is the National Standards Organization of Sri Lanka established under the Sri Lanka Standards Institution Act No. 6 of 1984 which repealed and replaced the Bureau of Ceylon Standards Act No. 38 of 1964. The Institution functions under the Ministry of Science & Technology.

The principal objects of the Institution as set out in the Act are to prepare standards and promote their adoption, to provide facilities for examination and testing of products, to operate a Certification Marks Scheme, to certify the quality of products meant for local consumption or exports and to promote standardization and quality control by educational, consultancy and research activity.

The Institution is financed by Government grants, and by the income from the sale of its publications and other services offered for Industry and Business Sector. Financial and administrative control is vested in a Council appointed in accordance with the provisions of the Act.

The development and formulation of National Standards is carried out by Technical Experts and representatives of other interest groups, assisted by the permanent officers of the Institution. These Technical Committees are appointed under the purview of the Sectoral Committees which in turn are appointed by the Council. The Sectoral Committees give the final Technical approval for the Draft National Standards prior to the approval by the Council of the SLSI.

All members of the Technical and Sectoral Committees render their services in an honorary capacity. In this process the Institution endeavours to ensure adequate representation of all view points.

In the International field the Institution represents Sri Lanka in the International Organization for Standardization (ISO), and participates in such fields of standardization as are of special interest to Sri Lanka.

Printed at the Sri Lanka Standards Institution, 17, Victoria Place, Elvitigala Mawatha, Colombo 08.