මෙය රාජා භාෂාවෙන් වෙනම මුදුණය කර ඇත.

ලී ලංකා පුමිනි 268:1974 SRI LANKA STANDARD 268:1974 විශ්ව දශම වර්ග කිරීම UDC 621.882:082

අපුස මෙට්ඩක් ඉස්කුරුප්පු පොටවල් පිළිබඳ පිරිව්නර

IV වන කොටස — සහන කුමය

SPECIFICATION FOR ISO METRIC SCREW THREADS

Part IV - Tolerancing System

ලංකා පුමිති කාර්ගාංශග BUREAU OF CEYLON STANDARDS

D1 1 D

SPECIFICATION FOR ISO METRIC SCREW THREADS

PART IV - TOLERANCING SYSTEM

S. L. S. 268 : 1974

Gr.7

Copyright Reserved BUREAU OF CEYLON STANDARDS 53, DHARMAPALA MAWATHA, COLOMBO-3. Sri Lanka Standards are subject to periodical revision in order to accommodate the progress made by industry. Suggestions for improvement will be recorded and brought to the notice of the Committees to which the revisions are entrusted.

This Standard does not purport to include all the necessary provisions of a contract.

BUREAU OF CEYLON STANDARDS 53, DHARMAPALA MAWATHA, COLOMBO-3.

Telephone : 26055 26054 26051 Telegrams: "PRAMIKA"

SRI LANKA STANDARD SPECIFICATION FOR ISO METRIC SCREW THREADS

Part IV—Tolerancing System

FOREWORD

This Sri Lanka Standard Specification was prepared by the Drafting Committee on Metric Screw Threads. It was approved by the Mechanical Engineering Divisional Committee of the Bureau of Ceylon Standards and was authorised for adoption and publication by the Council of the Bureau on 21st May, 1974.

Although this standard is not a revision of the C.S. 96, "Specification for Dimensions of Parallel Coarse Screw Threads of Whitworth Form", this standard will replace it in due course.

This standard is being issued in different parts as under

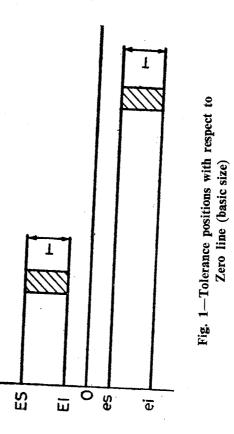
Part	1	 Basic and Design Profiles
Part	Π	 Pitch/Diameter combinations
Part	III	 Basic Dimensions
Part	IV	 Tolerancing System
		Tolerances
Part	VI	 Limits of sizes for commercial bolts screws and
		nuts.

This standard (Part IV) is based on ISO/R 965/1, "ISO General Purpose Metric Screw Threads — Tolerances, Principles and Basic Data" issued by the International Organisation for Standardization. In the preparation of this standard the assistance derived from the publications of the Indian Standards Institution is acknowledged.

For the purpose of deciding whether a particular requirement of this standard is complied with, the final value observed or calculated expressing the result of a test shall be rounded off in accordance with C.S. 102. The number of significant places retained in the rounded off value should be the same as that of the specified value.

1. SCOPE

This standard (Part IV) specifies a tolerance system for ISO Metric Screw Threads for the diameter range 1 to 300 mm. The tolerance values have been tabulated for the normal length of engagement only.


2. TERMINOLOGY AND SYMBOLS

2.1 Terminology: For the purpose of this standard the following terms shall apply.

S. L. S. 268 : 1974

- 2.1.1 Nut Thread: This shall mean to include the internal threads.
- 2.1.2 **Bolt Thread:** This shall mean to include the external threads.
- 2.1.3 Crest Diameter: Crest diameter shall mean, in case of nut threads, minor diameter and in case of bolt thread, major diameter.
- 2.2 Symbols: The various symbols used in this standard shall denote the quantities given below against each:

Symbol	Explanation					
D	basic major diameter of nut thread					
D ₁	basic minor diameter of nut thread					
D ₂	basic pitch diameter of nut thread					
d	basic major diameter of bolt thread					
d	basic minor diameter of bolt thread					
d ₂	basic pitch diameter of bolt thread					
d	design minor diameter of bolt thread					
P	pitch					
R	bolt root radius					
S	designation for thread engagement group short					
N	designation for thread engagement group normal					
L	designation for thread engagement group long					
Т	tolerance					
$\begin{array}{c} T_{D_1} & T_{D_2} \\ T_d & T_{d_2} \end{array}$	tolerances for D_1 , D_2 , d, d_2 .					
ei, EI	lower deviations					
es, ES	upper deviations					

3. STRUCTURE OF THE TOLERANCE SYSTEM

- 3.1 The system provides for tolerances defined by tolerance grades, tolerance positions, and also a selection of grades and positions constituting tolerance classes.
- 3.2 Tolerance Grades For each of the two main elements, pitch diameter and crest diameter, a number of tolerance grades have been established as follows:

Minor diameter of nut threads Major diameter of bolt threads Pitch diameter of nut threads Pitch diameter of bolt threads Tolerance Grade 4, 5, 6, 7, 8 4, 6, 8 4, 5, 6, 7, 8 3, 4, 5, 6, 7, 8, 9

- 3.2.1 The grades 3, 4 and 5 correspond to precision threads where little variation of fit is required as well as to short lengths of thread engagement.
- 3.2.2 The grade 6 should be used for medium quality corresponding to the general run of commercial bolts and nuts.
- 3.2.3 The grades 7, 8 and 9 correspond to threads produced by less precise methods, such as cutting screw threads directly on hot rolled bars and long blind holes. These grades are intended for coarse quality as well as for long lengths of thread engagement.

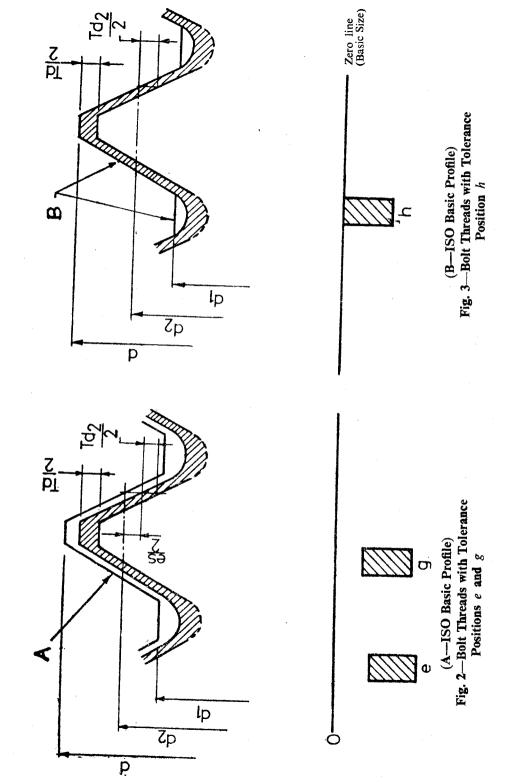
3.3 Tolerance Position

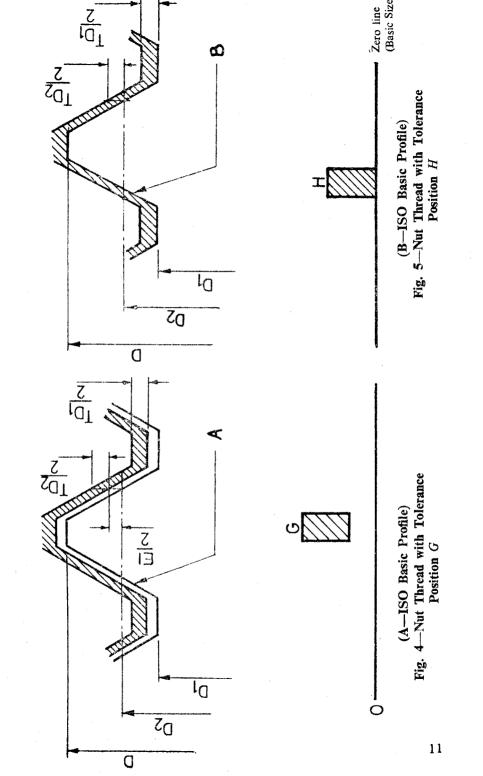
- 3.3.1 The tolerance position shall be so as to meet the current coating thicknesses and the requirements of easy assembly. The tolerance positions for bolt and nut threads are as indicated in Figs. 2, 3, 4 and 5.
- 3.3.2 The tolerance position 'e', however, is limited to pitches 0.5 mm and coarser.
- 3.4 Tolerance Classes The combination of tolerance grade and tolerance position shall constitute a tolerance class. In principle, any of the tolerance grades may be combined with any of the tolerance positions thereby giving rise to a large number of tolerance classes. In order to reduce the number of gauges and tools, the tolerance classes should preferably be chosen from Tables 1 and 2.
 - 3.4.1 Any of the preferred tolerance classes for nuts may be combined with any of the preferred tolerance classes for bolts. However, in order to guarantee sufficient overlap, the finished components should preferably be made to form the fits H/g, H/h or G/h (for P less than 0.5 only H/h is recommended).

Examples:

M6	 6H/6g
M12 x 1.25	 5H/4h
M20 x 2	 7G/6h

4. LENGTHS OF THREAD ENGAGEMENT


4.1 The lengths of thread engagement are classified as short (S), normal (N) and long (L).


For the calculation of the *limits* of the normal length of thread engagement, IN in table 3, the following rule has been applied.

IN min. — 2.24 P $d^{0.2}$ IN max. — 6.7 P $d^{0.2}$

Where IN, P, and d are in mm.

For each pitch within a certain diameter range, d has been set equal to the smallest diameter (within the range) which appears in the general plan for pitch diameter combinations.

TABLE 1

Tolerance Quality		oleranc osition (Tolerance Position H		
	S	N	L	S	N	L
Fine				†4H	†5H	†6H
Medium	‡5G	‡6G	‡7G	*5H	*6H	*7H
Coarse		‡7G	‡8G	}	†7H	8H

PREFERRED TOLERANCE CLASSES FOR NUTS (Clause 3.4)

* These classes are first choice

† These classes are second choice

[‡] These classes are third choice: they should be avoided

TABLE 2

PREFERRED TOLERANCE CLASSES FOR BOLTS (Clause 3.4)

Tolerance	Tolerance Position e			Tolerance Position g			Tolerance Position h		
Quality	S	N		S	N	L	s	N	
Fine Medium Coarse		*6e	‡7e6e	‡5g6g	* <mark>6g</mark> †8g	‡7g6g ‡9g8g	‡3h 4h ‡5h 6h	†4h †6h	‡5h 4h ‡7h 6h

Note:

* These classes are first choice

† These classes are second choice

[‡] These classes are third choice: they should be avoided

Tolerance classes within the frames are selected for commercial bolt and nut threads.

* Exceptions are the values for threads with P=0.75 mm and finer.

5. FUNDAMENTAL DEVIATIONS

5.1 The fundamental deviations for the nut and bolt threads for the various tolerance positions are calculated on the basis of the following formulae:

 $EI = + (15+11P) \quad es_e = - (50+11P)^*$ $EI = O \quad es_g = - (15+11P)$ $H \quad es = O$ h $EI, es in \mu m, P in mm$

5.2 The values of fundamental deviations for the various pitches are given in Table 4. Those values apply to the basic dimensions of design profiles of nut and bolt threads given in Part III of the standard. These values have been calculated from the formulae given in 5.1 and then rounded off to the nearest value in R40 series of preferred numbers (C.S. 103).

6. CREST DIAMETER TOLERANCES

6.1 Bolt Crest Diameter Tolerance

The bolt crest diameter tolerance Td (that is, major diameter tolerance of bolt thread) is calculated by the following formula:

 $Td(6) = 180 \ 3 \ p2 \ - \ P \ Td in \ \mu m P in \ mm$

Tolerances for other grades are obtained from Td (6) values according to the table given below:

Tolerance Grade

4	6	8
0.63 Td (6)	Td (6)	1.6 Td (6)

6.2 Nut Crest Diameter Tolerance

The nut crest diameter tolerance TD_1 (that is, minor diameter tolerance of nut thread) is calculated by the following formulae:

Exceptions are the values for threads with P=0.75 mm and finer.

 $TD_1(6) = 433 P - 190 P^{1.22}$ for pitches 0.2 to 0.8 mm

$$TD_1(6) = 230 P^{0.7}$$
 for pitches 1 mm and coarser
 TD_1 in μ m and
P in mm

Tolerances for other grades are obtained from TD_1 , (6) values according to the table given below:

TOLERANCE GRADE

4	5	6	. 7	8
0.63 TD ₁ (6)	0.8 TD ₁ (6)	TD ₁ (6)	1.25 TD ₁ (6)	1.6 TD ₁ (6)

6.3 The crest diameter tolerances, Td for the bolt major diameter and TD_1 for the nut minor diameter, are given in Tables 5 and 6. These values have been calculated from the formulae given in 6.1 and 6.2 and then rounded off to the nearest value in R 40 series of preferred numbers (C.S. 103).

7. PITCH DIAMETER TOLERANCES

7.1 Formula for pitch diameter tolerance for bolt threads shall be as given below:

Bolt pitch diameter tolerance Td_2 (6) = 90 P^{0.4}d^{0.1}

 Td_2 in μm

P and d in mm

Tolerances for other grades are obtained from Td_{1} (6) values according to the table given below

TOLERANCE GRADE

3	4	5	6	7	8	9
0.5 <i>Td</i> ₂ (6)	0. 63 <i>Td</i> ₂ (6)	0.8 <i>Td</i> ₂ (6)	<i>Td</i> ₂ (6)	1. 25 <i>Td</i> ₂ (6)	1. 6 <i>Td</i> ₂ (6)	2 <i>Td</i> ₂ (6)

7.2 The nut pitch diameter tolerance TD_2 is obtained from TD_2 (6) values according to the table given below.

Tolerance Grade

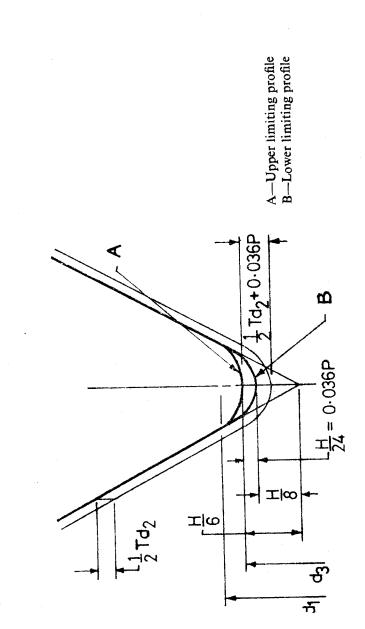
$\begin{array}{ c c c c c c c c } \hline 4 & 5 & 6 & 7 & 8 \\ \hline 0.85Td_2 (6) & 1.06Td_2 (6) & 1.32Td_2 (6) & 1.7Td_2 (6) & 2.12Td_2 (6) \\ \hline \end{array}$		1	1			
$0.85 \text{Td}_2(6)$ 1.06Td ₂ (6) 1.32Td ₂ (6) 1.7Td ₂ (6) 2.12Td ₂ (6)	4	5	6	7	8	
	0.85Td ₂ (6)	1.06Td ₂ (6)	1.32Td ₂ (6)	1.7Td ₂ (6)	2.12Td ₂ (6)	

- 7.3 The pitch diameter tolerance for bolt threads Td_2 and for nut threads TD_2 are given in Tables 7 and 8. These values have been calculated from the formula given in 7.1 and 7.2 and then rounded off to the nearest value in R 40 series of preferred numbers (C. S. 103).
 - Note: No Td_2 values are given in the table when the calculated values exceed the Td values in the tolerance grades which are combined in the tables for preferred tolerance classes. No TD_2 values are given in the table when calculated values exceed 0.25 P.

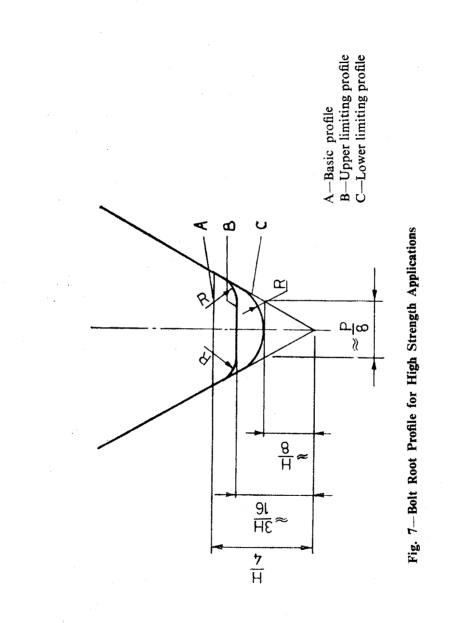
8. Root Diameter Limits

8.1 Nut Major Diameter Limits — The minimum major diameter of the nut thread shall be specified by the EI-values.

The maximum major diameter of the nut thread shall not be specified.


8.2 Bolt Minor Diameter Limits — The maximum minor diameter of the bolt thread shall be specified by the os-values based on H/6 truncation and will in practice enable a GO ring gauge with truncation of H/4 to enter (see Fig. 6).

For the design of tools, comparator plates, etc., the minimum minor diameter of the bolt thread shall be calculated with truncation of H/8 = 0.108 P. Consequently the lower deviation should be calculated in accordance with $ei = es-(Td_2 + 0.072P)$.


8.3 For normal applications the root radius is not specified but for high strength applications (fatigue and/or shock load), it is recommended to specify that the root profile for bolt threads should not present a radius of curvature R less than 0.1 P (see Table 9), which corresponds approximately to a truncation of 3H/16 for the upper limiting profile and H/8 for the lower limiting profile (see Fig. 7).

Such requirements should be specified by adding the minimum root radius to the tolerance designation.

The decisive maximum limit of the bolt thread minor diameter is equal to the basic bolt thread minor diameter less the amount indicated by X Fig. 7.

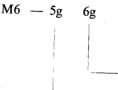
9. **DESIGNATION**

- 9.1 A complete screw thread designation shall consist of:
 - (a) size designation, and
 - (b) tolerance class designation.

9.1.1 Size Designation

Size of a screw thread shall be designated by the letter 'M' followed by the diameter and the pitch, the two being separated by the sign 'X'. Where there is no indication of pitch, it shall mean coarse pitch is implied.

9.1.2 Tolerance Class Designation


This shall include a class designation for the pitch diameter tolerance followed by a class designation for the crest diameter tolerance. Each class designation shall consist of:

- (a) a figure indicating tolerance grade (see 3.1) and
- (b) a letter indicating tolerance position (see 3.2).

Where the class designation for pitch diameter tolerance is only given, the same class designation applies to the crest diameter tolerance as well.

Examples:

External Thread

Class designation for pitch diameter tolerance

Class designation for crest diameter tolerance

Internal Thread M20 x 2 - 6H

Class designation for pitch and crest diameter tolerance (same)

Note: Where no tolerances are specified, class 6H and 6g will be applicable for nut threads and bolt threads, respectively.

TABLE 3 -- LENGTH OF THREAD ENGAGEMENT

(Unit : Millimetre)

Basic major		Basic major		Length of thread engagement				
	diameter d		S	N		L		
over	up to & incl.		up to & incl.	over	up to & incl.	over		
0.99	1.4	0.2 0.25 0.3	0.5 0.6 0.7	0.5 0.6 0.7	1.4 1.7 2	1.4 1.7 2		
1.4	2.8	0.2 0.25 0.35 0.4 0.45	0.5 0.6 0.8 1 1.3	0.5 0.6 0.8 1 1.3	1.5 1.9 2.6 3 3,8	1.5 1.9 2.6 3 3.8		
2.8	5.6	0.35 0.5 0.6 0.7 0.75 0.8	1 1.5 1.7 2 2.2 2.5	1 1.5 1.7 2 2.2 2.5	3 4.5 5 6 6.7 7.5	3 4.5 5 6 6.7 7.5		
5.6	11.2	0.75 1 1.25 1,5	2.4 3 4 5	2.4 3 4 5	7.1 9 12 15	7.1 9 12 15		
11.2	22.4	1 1.25 1.5 1.75 2 2.5	3.8 4.5 5.6 6 8 10	3.8 4.5 5.6 6 8 10	11 13 16 18 24 30	11 13 16 18 24 30		
22.4	45	1 1.5 2 3 3.5 4 4.5	4 6.3 8.5 12 15 18 21	4 6.3 8.5 12 15 18 21	12 19 25 36 45 53 63	12 19 25 36 45 53 63		
45	90	1.5 2 3 4 5 5.5 6	7.5 9.5 15 19 24 28 32	7.5 9.5 15 19 24 28 32	22 28 45 56 71 85 95	22 28 45 56 71 85 95		
90	180	2 3 4 6	12 18 24 36	12 18 24 36	12 53 71 106	36 53 71 106		
180	355	3 4 6	20 26 40	20 26 40	60 80 118	60 80 118		

	Fundamental deviation							
Pitch		thread	Bolt thread					
P		2, <i>D</i> 1	d, d ₂					
·.	G	H	e	g	h			
	El	El	es	es	es			
mm	um	um	um	um	um			
0.2 0.25 0.3	+17 +18 +18	0 0 0		17 18 18	0 0 0			
0.35	+19	0		19	0			
0.4	+19	0		19	0			
0.45	+20	0		20	0			
0.5	$^{+20}_{+21}_{+22}$	0	50	20	0			
0.6		0	53	21	0			
0.7		0	56	22	0			
0.75	+22 +24 +26	0	-56	22	0			
0.8		0	-60	24	0			
1		0	-60	26	0			
1.25 1.5 1.75	+28 + 32 + 34	0 0 0	- 63 - 67 - 71	28 32 34	0 0 0			
2 2.5 3	+38 + 42 + 48	0 0 0	-71 - 80 - 85		0 0 0			
3.5	+53 +60 +63	0	90	53	0			
4		0	95	60	0			
4.5		0	100	63	0			
5	+71	0	106	71	0			
5.5	+75	0	112	75	0			
6	+80	0	118	80	0			

TABLE 4 — FUNDAMENTAL DEVIATION OF NUT THREADS AND BOLT THREADS

TABLE 5 -- BOLT MAJOR DIAMETER TOLERANCES Td (Clause 6.3)

Values in um

Pitch	Tolera	ince grade	
P mm	4	6	8
0.2	36	56	6
0.25	42	67	
0.3	48	75	
0.35	53	85	
0.4	60	95	
0.45	63	100	
0.5	67	106	
0.6	80	125	
0.7	90	140	
0.75 0.8 1	90 95 112	140 150 180	236 280
1.25	132	212	335
1.5	150	236	375
1.75	170	265	425
2	180	280	450
2.5	212	335	530
3	236	375	600
3.5	265	425	670
4	300	475	750
4.5	315	500	800
5	335	530	850
5.5	355	560	900
6	375	600	950

TABLE 6 -- NUT MINOR DIAMETER TOLERANCES TD₁ (Clause 6.3)

Values in um

19.22

Pitel	h		Tolerance a	grade	
P mm	4	5	6	7	8
0.2 0.25 0.3	38 45 53	56 67			
0.35 0.4 0.45	63 71 80	80 90 100	100 112 125		
0.5	90	112	140	180	
0.6	100	125	160	200	
0.7	112	140	180	224	
0.75 0.8 1	118 125 150	150 160 190	190 200 236	236 250 300	315 375
1.25	170	312	265		425
1.5	190	236	300		475
1.75	212	265	335		530
2	236	300	375	475	600
2.5	280	355	450	560	710
3	315	400	500	630	800
3.5	355	450	560	710	900
4	375	475	600	750	950
4.5	425	530	670	850	1 060
5	450	560	710	900	1 120
5.5	475	600	750	950	1 180
6	500	630	800	1000	1 250

ŹŽ

S. L. S. 268 : 1974

TABLE 7-BOLT PITCH DIAMETER TOLERANCES TD2

(Clause 7.3)

Values in um

	Basic Major diameter d m m		Pitch Tolerance grade						
Above	up to and in- cluding	P mm	3	4	5	б	7	8	9
0.99	1.4	0.2 0.25 0.3	24 26 28	30 34 36	38 42 45	48 53 56			
1.5	2.8	0.2 0.25 0.35 0.4 0.45	25 28 32 34 36	32 36 40 42 45	40 45 50 53 56	50 56 63 67 71			
2.8	5.6	0.35 0.5 0.6 0.7 0.75 0.8	34 38 42 45 45 45 48	42 48 53 56 56 60	53 60 67 71 71 71 75	67 75 85 90 90 95	85 95 106 112 112 118	150	 190
5.6	11.2	0.75 1 1.25 1.5	50 56 60 67	63 71 75 85	80 90 95 106	100 112 118 132	125 140 150 170	180 190 212	224 236 265
11.2	22.4	1 1.25 1.5 1.75 2 2.5	60 67 71 75 80 85	75 85 90 95 100 106	95 106 112 118 125 132	118 132 140 150 160 170	150 170 180 190 200 212	190 212 224 236 250 265	236 265 280 300 315 335
22.4	45	1 1.5 2 3 3.5 4 4.5	63 75 85 100 106 112 118	80 95 106 125 132 140 150	100 118 132 160 170 180 190	125 150 170 200 212 224 236	160 190 212 250 265 280 300	200 236 265 315 335 355 355 375	250 300 335 400 425 450 475
45	90	1.5 2 3 4 5 5.5 6	80 90 106 118 125 132 140	100 112 132 150 160 170 180	125 140 170 190 200 212 224	160 180 212 236 250 265 280	200 224 265 300 315 335 355	250 280 335 375 400 425 450	315 355 425 475 500 530 560
90	180	2 3 4 6	95 112 125 150	118 140 160 190	150 180 200 236	190 224 250 300	236 280 315 375	300 355 400 475	375 450 500 600
180	300	3 4 6	125 140 160	160 180 200	200 224 250	250 280 315	315 355 400	400 450 500	500 560 630

TABLE 8 --- NUT PITCH DIAMETER TOLERANCES TD2

(Clause 7.3)

Values in um

	Basic major diameter d m m		Tolerance grade					
Above	up to and inclu- ding	P mm	4	5	. 6	7	8	
0.99	1.4	0.2 0.25 0.3	40 45 48	56 60	75			
1.5	2.8	0.2 0.25 0.35 0.4 0.45	42 48 53 56 60	60 67 71 75				
2.8	5.6	0.35 0.5 0.6 0.7 0.75 0.8	56 63 71 75 75 80	71 80 90 95 95 100	90 100 112 118 118 125	125 140 150 150 160	 200	
5.6	11.2	0.75 1 1.25 1.5	85 95 100 112	106 118 125 140	132 150 160 180	170 190 200 224	236 250 280	
11.2	22.4	1 1.25 1.5 1.75 2 2.5	100 112 118 125 132 140	125 140 150 160 170 180	160 180 190 200 212 224	200 224 236 250 265 280	250 280 300 315 335 355	
22.4	45	1 1.5 2 3 3.5 4 4.5	106 125 140 170 180 190 200	132 160 180 212 224 236 250	170 200 224 265 280 300 315	212 250 280 335 355 375 400	315 355 425 450 475 500	
45	90	1.5 2 3 4 5 5.5 6	132 150 180 200 212 224 236	170 190 224 250 265 280 300	212 236 280 315 335 355 375	265 300 355 400 425 450 475	335 375 450 500 530 560 600	
90	180	2 3 4 6	160 190 212 250	200 236 265 315	250 300 335 400	315 375 425 500	400 475 530 630	
180	300	3 4 6	212 236 265	265 300 335	335 375 425	425 475 530	530 600 670	

TABLE 9 — MINIMUM ROOT RADII FOR HIGH STRENGTH APPLICATIONS

Pitch	R	Pitch	R	
P	Min	P	Min.	
mm	µm	mm	μm	
0.2	20	1.25	125	
0.25	25	1.5	150	
0.3	30	1.75	175	
0.35	35	2	200	
0.4	40	2.5	250	
0.45	45	3	300	
0.5	50	3.5	350	
0.6	60	4	400	
0.7	70	4.5	450	
0.75	75	5	500	
0.8	80	5.5	550	
1	100	6	600	

(Clause 8.3)

D1 1 D

SLS CERTIFICATION MARK

The Sri Lanka Standards Institution is the owner of the registered certification mark shown below. Beneath the mark, the number of the Sri Lanka Standard relevant to the product is indicated. This mark may be used only by those who have obtained permits under the SLS certification marks scheme. The presence of this mark on or in relation to a product conveys the assurance that they have been produced to comply with the requirements of the relevant Sri Lanka Standard under a well designed system of quality control inspection and testing operated by the manufacturer and supervised by the SLSI which includes surveillance inspection of the factory, testing of both factory and market samples.

Further particulars of the terms and conditions of the permit may be obtained from the Sri Lanka Standards Institution, 17, Victoria Place, Elvitigala Mawatha, Colombo 08.

Printed at SLSI (Printing Unit)

SRI LANKA STANDARDS INSTITUTION

The Sri Lanka Standards Institution (SLSI) is the National Standards Organization of Sri Lanka established under the Sri Lanka Standards Institution Act No. 6 of 1984 which repealed and replaced the Bureau of Ceylon Standards Act No. 38 of 1964. The Institution functions under the Ministry of Science & Technology.

The principal objects of the Institution as set out in the Act are to prepare standards and promote their adoption, to provide facilities for examination and testing of products, to operate a Certification Marks Scheme, to certify the quality of products meant for local consumption or exports and to promote standardization and quality control by educational, consultancy and research activity.

The Institution is financed by Government grants, and by the income from the sale of its publications and other services offered for Industry and Business Sector. Financial and administrative control is vested in a Council appointed in accordance with the provisions of the Act.

The development and formulation of National Standards is carried out by Technical Experts and representatives of other interest groups, assisted by the permanent officers of the Institution. These Technical Committees are appointed under the purview of the Sectoral Committees which in turn are appointed by the Council. The Sectoral Committees give the final Technical approval for the Draft National Standards prior to the approval by the Council of the SLSI.

All members of the Technical and Sectoral Committees render their services in an honorary capacity. In this process the Institution endeavours to ensure adequate representation of all view points.

In the International field the Institution represents Sri Lanka in the International Organization for Standardization (ISO), and participates in such fields of standardization as are of special interest to Sri Lanka.

Printed at the Sri Lanka Standards Institution, 17, Victoria Place, Elvitigala Mawatha, Colombo 08.