SRI LANKA STANDARD 1332 : Part 7/Section 1 : 2010 ISO 6561-1 : 2005

METHODS OF TEST FOR FRUITS AND VEGETABLE PRODUCTS PART 7– DETERMINATION OF CADMIUM CONTENT Section 1 : Method using graphite furnace atomic absorption spectrometry

SRI LANKA STANDARDS INSTITUTION

Sri Lanka Standard METHODS OF TEST FOR FRUITS AND VEGETABLE PRODUCTS PART 7– DETERMINATION OF CADMIUM CONTENT Section 1 : Method using graphite furnace atomic absorption spectrometry

SLS 1332 : Part 7/Section 1 : 2010 ISO 6561-1 : 2005

Gr. C

Copyright Reserved SRI LANKA STANDARDS INSTITUTION 17, Victoria Place, Elvitigala Mawatha, Colombo 8, Sri Lanka. Sri Lanka Standards are subject to periodical revision in order to accommodate the progress made by industry. Suggestions for improvement will be recorded and brought to the notice of the Committees to which the revisions are entrusted.

1

This standard does not purport to include all the necessary provisions of a contract.

© SLSI 2010

All right reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the SLSI.

Sri Lanka Standard METHODS OF TEST FOR FRUITS AND VEGETABLE PRODUCTS PART 7 – DETERMINATION OF CADMIUM CONTENT Section 1 : Method using graphite furnace atomic absorption spectrometry

NATIONAL FOREWORD

This Sri Lanka standard was approved by the Sectoral Committee on Agricultural and Food Products and was authorized for adoption and publication as a Sri Lanka Standard by the Council of the Sri Lanka Standards Institution on 2010-03-25.

In order to accommodate the large number of test methods within the scope of one standard, this standard is published in several parts.

This part of the standard is identical with ISO 6561-1 : 2005- Fruits, vegetables and derived products- Determination of cadmium content – Part 1 : Method using graphite furnace atomic absorption spectrometry, published by the International Organization for Standardization (ISO).

Terminology and Conventions:

The text of the International Standard has been accepted as suitable for publication, without deviation, as a Sri Lanka Standard. However, certain terminology and conventions are not identical with those used in Sri Lanka Standards. Attention is therefore drawn to the following:

- a) Wherever the words "International Standard" appear referring to this standard should be interpreted as "Sri Lanka Standard".
- b) The comma has been used throughout as a decimal marker. In Sri Lanka Standards it is the current practice to use the full point on the base line as the decimal marker.
- c) Wherever page numbers are quoted, they are ISO page numbers.

The test temperature adopted in Sri Lanka is 27 ± 2 °C and relative humidity 65 ± 5 per cent is recommended.

SLS 1332 : Part 7/Section 1 : 2010 ISO 6561-1 : 2005

CROSS REFERENCE

International Standard

ISO 5515, Fruits, vegetables and derived Products-Decomposition of organic matter Prior to analysis – Wet method

Corresponding Sri Lanka Standard

SLS 1332 Part 11,Methods of test for fruits and vegetable products -Decomposition of organic matter -Prior to analysis – Wet method

INTERNATIONAL STANDARD

ISO 6561-1

First edition 2005-02-01

Fruits, vegetables and derived products — Determination of cadmium content —

Part 1: Method using graphite furnace atomic absorption spectrometry

Fruits, légumes et produits dérivés — Détermination de la teneur en cadmium —

Partie 1: Méthode par spectrométrie d'absorption atomique avec four en graphite

Reference number ISO 6561-1:2005(E)

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

© ISO 2005

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.org Web www.iso.org Published in Switzerland

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 6561-1 was prepared by Technical Committee ISO/TC 34, *Food products*, Subcommittee SC 3, *Fruit and vegetable products*.

This first edition of ISO 6561-1, together with ISO 6561-2:2004, cancels and replaces ISO 6561:1983, which has been technically revised.

ISO 6561 consists of the following parts, under the general title *Fruits, vegetables and derived products* — *Determination of cadmium content*:

- Part 1: Method using graphite furnace atomic absorption spectrometry
- Part 2: Method using flame atomic absorption spectrometry

SLS 1332 : Part 7/Section 1: 2010

Fruits, vegetables and derived products — Determination of cadmium content —

Part 1: **Method using graphite furnace atomic absorption spectrometry**

1 Scope

This part of ISO 6561 specifies a graphite furnace atomic absorption spectrometric method for the determination of the cadmium content of fruits, vegetables and derived products.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 5515:1979, Fruits, vegetables and derived products — Decomposition of organic matter prior to analysis — Wet method

3 Principle

Organic matter is decomposed by a wet method and the dissolved cadmium is determined by graphite furnace atomic absorption spectrometry.

4 Reagents

Use only reagents of recognized analytical grade, and which, with the exception of the cadmium sulfate hydrate (4.8) and the cadmium standard solutions (4.9 and 4.10), shall be free from cadmium. Use only water which has been double-distilled in borosilicate glass apparatus, or water of at least equivalent purity.

- **4.1** Sulfuric acid, concentrated, $\rho_{20} = 1,84$ g/ml.
- **4.2** Nitric acid, $\rho_{20} = 1,38$ g/ml.
- **4.3 Perchloric acid**, ρ_{20} = 1,67 g/ml.
- **4.4 Sulfuric acid**, dilute, 10 % (volume fraction).
- 4.5 EDTA (ethylenediaminetetraacetic acid, disodium salt), 0,20 mol/l solution.
- 4.6 Buffer solution, pH 9.

Dissolve 5,4 g of ammonium chloride in water and transfer to a 100 ml one-mark volumetric flask. Add 35 ml of 25 % (volume fraction) ammonia solution and make up to the mark with water.

4.7 Eriochrome black T, 1 % (mass fraction) mixture with sodium chloride.

4.8 Cadmium sulfate hydrate (3CdSO₄·8H₂O).

The titre of the cadmium sulfate shall be verified as follows.

Weigh exactly 102,6 mg of cadmium sulfate hydrate, transfer quantitatively to a conical flask with water and shake until dissolved. Add 5 ml of the buffer solution (4.6) and about 20 mg of the eriochrome black T mixture (4.7). Titrate with the EDTA solution (4.5) until the end point is reached as indicated by a change of colour to blue.

The volume of EDTA used shall be 20 ml. If the volume differs slightly, correct the mass of cadmium sulfate used to prepare the standard cadmium solution (4.9) accordingly.

4.9 Cadmium standard solution, corresponding to 1,0 mg of cadmium per mililitre.

4.10 Cadmium standard solution, containing 0,05 mg of cadmium per litre.

Transfer, by means of a pipette, 10 ml of the cadmium standard solution (4.9) to 1 000 ml one-mark volumetric flask and dilute to the mark with water. Transfer 5 ml of this solution to another 1 000 ml one-mark volumetric flask and dilute to the mark with the dilute sulfuric acid (4.4).

1 ml of this standard solution contains 0,05 μ g of cadmium.

5 Apparatus

The glassware used shall be washed beforehand with hot concentrated nitric acid and rinsed with water.

Usual laboratory apparatus and, in particular, the following.

- 5.1 Round-bottom flasks, of capacity 1 000 ml.
- 5.2 One-mark volumetric flasks, of capacity 50 ml.
- 5.3 **One-mark pipettes** or **graduated pipettes**, of appropriate capacities.
- 5.4 Funnels and ashless filter papers.
- 5.5 Conical flask.
- 5.6 Burette, of capacity 25 ml, graduated in 0,1 ml divisions.

5.7 Atomic absorption spectrometer, with a graphite furnace, a background corrector, a multipotentiometric recorder and a hollow-cathode cadmium lamp, suitable for measurements at a wavelength of 228,8 nm.

5.8 Eppendorf micropipettes, of capacities 5 μ l, 10 μ l, 20 μ l, 25 μ l and 50 μ l, having standard colourless Eppendorf tips.

Some Eppendorf micropipettes are inaccurate by 10 % or more. Unless they have been especially calibrated for this procedure, it is recommended that the same pipette be used with the test solution, blank test solution and calibration solutions.

5.9 Analytical balance.

5.10 Mechanical grinder, the internal lining and blades of which are of polytetrafluoroethylene (PTFE).

6 Sampling

A representative sample should have been sent to the laboratory. It should not have been damaged or changed during transport or storage.

Sampling is not part of the method specified in this part of ISO 6561. If there is no specific International Standard dealing with the product concerned, it is recommended that the parties concerned come to an agreement on the subject.

7 Procedure

7.1 Preparation of the test sample

Mix the laboratory sample well. If necessary, first remove stones, stalks and hard seed-cavity walls and pass the laboratory sample through the mechanical grinder (5.10).

Allow frozen or deep-frozen products to thaw in a closed vessel and add the liquid formed during this process to the product before mixing.

7.2 Test portion

7.2.1 Liquid products

Take, by means of pipette, 10 ml of the test sample (7.1).

It is also possible to take the test portion by mass by weighing a quantity of the test sample to the nearest 0,01 g.

7.2.2 Semi-solid and solid products

Weigh, to the nearest 0,01 g, a quantity of the test sample (7.1) corresponding to approximately 10 g of product.

7.3 Decomposition

Transfer the test portion (7.2) to a round-bottom flask (5.1). If the test portion is liquid (7.2.1) and contains ethanol, first eliminate ethanol by boiling and then allow to cool. Add 10 ml of nitric acid (4.2), heat and then carefully add 5 ml of concentrated sulfuric acid (4.1) Proceed as described in ISO 5515:1979, 6.3.1, from the second paragraph to the eighth paragraph.

When decomposition is complete, filter the sample solution, diluted with a few millilitres of water, through an ashless filter paper (5.4) that has been previously rinsed with hydrochloric acid and water. Collect the filtrate in a 50 ml one-mark volumetric flask (5.2), rinsing the round-bottom flask (5.1) and the filter paper with a few millilitres of water and collecting the rinsing in the same volumetric flask. Shake, allow to cool, and dilute to the mark. Mix by shaking.

7.4 Blank test

Carry out a blank test by repeating the decomposition (7.3), replacing the test portion by 10 ml of water.

7.5 Determination

7.5.1 Furnace programme

The furnace shall allow four independent thermal stages:

- a) drying the solution;
- b) thermal decomposition;
- c) atomization;
- d) increase to maximum temperature to purge the furnace.

The proposed conditions are as follows:

- drying at 100 °C for 25 s;
- instantaneous change to the stage of thermal decomposition at 450 °C for 30 s;
- atomization in 7 s at 1 900 °C, after a progressive increase to this temperature. During this stage, the apparatus shall record the maximum absorbance and the variation in absorbance. The duration over which atoms exist in the furnace may be increased by decreasing the rate of circulation of nitrogen ("mini flow") or by stopping it altogether ("gas stop");
- increase to the maximum temperature (2 700 °C) to purge the furnace with nitrogen at the end of the procedure.

7.5.2 Preparation of the calibration graph

Prepare calibration solutions having cadmium concentrations of 5 μ g/l, 10 μ g/l and 20 μ g/l by suitably diluting the cadmium standard solution (4.10). Inject successively into the furnace, programmed in accordance with 7.5.1, by means of micropipette (5.8) fitted with a tip, 50 μ l of each of these calibration solutions. Determine the absorbance from the heights of the peaks registered. Calculate the mean value of the absorbance from the results of three injections into the furnace. The absorbances thus determined correspond, respectively, to 0,000 25 μ g, 0,000 5 μ g and 0,001 μ g of cadmium. Plot a calibration graph having, for example, the values of absorbances as ordinates and the corresponding cadmium concentrations as abscissae.

7.5.3 Determination of test solution

Inject successively into the furnace, programmed in accordance with 7.5.1, by means of a micropipette (5.8) fitted with a tip, three times the adequate volume of the decomposed sample solution obtained in 7.3. Note the corresponding absorbances. Calculate the mean value of the absorbance and, from the calibration graph, read the quantity of cadmium contained in the 50 μ I of injected test solution.

7.5.4 Determination of the blank test solution

Inject successively into the furnace, programmed in accordance with 7.5.1, by means of a micropipette (5.8) fitted with a tip, three times the adequate volume of the blank test solution (7.4). The absorbance shall be zero or less than 0,005. If necessary, subtract the mean of the three values of absorbance of the blank test solution from the mean absorbance of the test solution determined in 7.5.3 before referring to the calibration graph (7.5.2) to obtain the cadmium content of the solution.

8 Expression of the results

8.1 Method of calculation and equations

8.1.1 Liquid products

The cadmium content of the sample, expressed in milligrams per litre of product, is equal to

 $m_1 \times 100$

(1)

where m_1 is the mass, in micrograms, of cadmium contained in the injected volume of the test portion, read from the calibration graph.

8.1.2 Semi-solid and solid products

The cadmium content of the sample, expressed in milligrams per kilogram of product, is equal to

$$\frac{m_1 \times 1000}{m_0} \tag{2}$$

where

- m_0 is the mass, in grams, of the test portion (7.2.2);
- m_1 is the mass, in micrograms, of cadmium contained in the injected volume of the test portion, read from the calibration graph.

8.2 Other method of expression of results

To express the cadmium content on the dry basis, modify the equations accordingly.

9 Repeatability

The absolute difference between two independent single test results, obtained using the same method on identical test material in the same laboratory by the same operator using the same equipment within a short interval of time, will in not more than 5 % of cases be greater than 10 % of the arithmetic mean of the two results.

10 Test report

The test report shall specify:

- a) all information necessary for the complete identification of the sample;
- b) the sampling method used, if known;
- c) the test method used, with reference to this part of ISO 6561;
- d) all operating details not specified in this part of ISO 6561, or regarded as optional, together with details of any incidents which may have influenced the test result(s);
- e) the test result(s) obtained, or, if the repeatability has been checked, the final quoted result obtained.

SLS 1332 : Part 7/Section 1: 2010 **ISO 6561-1:2005(E)**

ICS 67.080.01 Price based on 5 pages

SLS CERTIFICATION MARK

The Sri Lanka Standards Institution is the owner of the registered certification mark shown below. Beneath the mark, the number of the Sri Lanka Standard relevant to the product is indicated. This mark may be used only by those who have obtained permits under the SLS certification marks scheme. The presence of this mark on or in relation to a product conveys the assurance that they have been produced to comply with the requirements of the relevant Sri Lanka Standard under a well designed system of quality control inspection and testing operated by the manufacturer and supervised by the SLSI which includes surveillance inspection of the factory, testing of both factory and market samples.

Further particulars of the terms and conditions of the permit may be obtained from the Sri Lanka Standards Institution, 17, Victoria Place, Elvitigala Mawatha, Colombo 08.

Printed at SLSI (Printing Unit)

SRI LANKA STANDARDS INSTITUTION

The Sri Lanka Standards Institution (SLSI) is the National Standards Organization of Sri Lanka established under the Sri Lanka Standards Institution Act No. 6 of 1984 which repealed and replaced the Bureau of Ceylon Standards Act No. 38 of 1964. The Institution functions under the Ministry of Science & Technology.

The principal objects of the Institution as set out in the Act are to prepare standards and promote their adoption, to provide facilities for examination and testing of products, to operate a Certification Marks Scheme, to certify the quality of products meant for local consumption or exports and to promote standardization and quality control by educational, consultancy and research activity.

The Institution is financed by Government grants, and by the income from the sale of its publications and other services offered for Industry and Business Sector. Financial and administrative control is vested in a Council appointed in accordance with the provisions of the Act.

The development and formulation of National Standards is carried out by Technical Experts and representatives of other interest groups, assisted by the permanent officers of the Institution. These Technical Committees are appointed under the purview of the Sectoral Committees which in turn are appointed by the Council. The Sectoral Committees give the final Technical approval for the Draft National Standards prior to the approval by the Council of the SLSI.

All members of the Technical and Sectoral Committees render their services in an honorary capacity. In this process the Institution endeavours to ensure adequate representation of all view points.

In the International field the Institution represents Sri Lanka in the International Organization for Standardization (ISO), and participates in such fields of standardization as are of special interest to Sri Lanka.

Printed at the Sri Lanka Standards Institution, 17, Victoria Place, Elvitigala Mawatha, Colombo 08.