SRI LANKA STANDARD 1256 : PART 10 : 2004 ISO 3856-1: 1984

METHODS OF TEST FOR PAINTS AND VARNISHES PART 10: DETERMINATION OF SOLUBLE LEAD

SRI LANKA STANDARDS INSTITUTION

SRI LANKA STANDARD METHODS OF TEST FOR PAINTS AND VARNISHES PART 10: DETERMINATION OF SOLUBLE LEAD

SLS 1256: Part 10: 2004

ISO 3856-1: 1984

(Superceding SLS 535: Part 2: 1981- Section 2.5)

Gr. C

SRI LANKA STANDARDS INSTITUTION
17, Victoria Place
Elvitigala Mawatha
Colombo - 08
Sri Lanka.

Sri Lanka Standards are subject to periodical revision in order to accommodate the progress made by industry. Suggestions for improvement will be recorded and brought to the notice of the Committees to which the revisions are entrusted.

This standard does not purport to include all the necessary provisions of a contract.

© SLSI 2004

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the SLSI.

SLS 1256: Part 10: 2004

ISO 3856-1: 1984

(Superceding SLS 535 : Part 2: 1981- Section 2.5)

SRI LANKA STANDARD METHODS OF TEST FOR PAINTS AND VARNISHES PART 10: DETERMINATION OF SOLUBLE LEAD

NATIONAL FOREWORD

This Sri Lanka Standard was approved by the Sectoral Committee on Chemical and Polymer Technology and authorized for adoption and publication by the Council of the Sri Lanka Standards Institution on 2004-01-23.

This standard was published in 1981 which superceded CS 70: 1969. In this revision each test method is given as a separate part in order to facilitate updating. This standard supercedes SLS 535: Part 2: 1981. Tests involving chemical examination of liquid paints and dried paint films, Section 2.5 Determination of soluble lead.

TERMINOLOGY AND CONVENTIONS

The text of the International Standard has been accepted as suitable for publication without deviation, as a Sri Lanka Standard. However certain terminology and conventions are not identical with those used in Sri Lanka Standards. Attention is therefore drawn to the following:

- a) Wherever the words 'International Standard/publication' appear referring to a particular standard, they should be interpreted as "Sri Lanka Standard".
- b) The comma has been used throughout as a decimal marker. In Sri Lanka Standards it is the current practice to use the full point on the baseline as the decimal marker.

Attention is also drawn to the test temperature adopted in Sri Lanka which is 27 ± 0.5 ° C.

SLS 1256: Part 10: 2004

ISO 3856-1:1984

(Superceding SLS 535 : Part 2: 1981- Section 2.5)

CROSS REFERENCES

International Standard	Corresponding Sri Lanka Standard
ISO 385/1 Laboratory glassware- Burettes- Part 1: General requirements	No equivalent Sri Lanka Standard
ISO 648 Laboratory glassware – One-mark pipettes	No equivalent Sri Lanka Standard
ISO 1042 Laboratory glassware- One-mark volumetric flasks	No equivalent Sri Lanka Standard
ISO 3696 Water for laboratory use- Specifications	No equivalent Sri Lanka Standard
ISO 4800 Laboratory glassware- Separating funnels and dropping funnels	No equivalent Sri Lanka Standard
ISO 6713 Paints and varnishes-Preparation of acid extracts from paints in liquid or powder form	SLS 1256: Part 9 Preparation of acid extracts from paints

International Standard

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION•МЕЖДУНАРОДНАЯ ОРГАНИЗАЦИЯ ПО СТАНДАРТИЗАЦИИ•ORGANISATION INTERNATIONALE DE NORMALISATION

Paints and varnishes — Determination of "soluble" metal content —

Part 1: Determination of lead content — Flame atomic absorption spectrometric method and dithizone spectrophotometric method

Peintures et vernis — Détermination de la teneur en métaux «solubles» — Partie 1: Détermination de la teneur en plomb — Méthode par spectrométrie d'absorption atomique dans la flamme et méthode spectrophotométrique à la dithizone

Third edition - 1984-12-15

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.

Draft International Standards adopted by the technical committees are circulated to the member bodies for approval before their acceptance as International Standards by the ISO Council. They are approved in accordance with ISO procedures requiring at least 75 % approval by the member bodies voting.

International Standard ISO 3856/1 was prepared by Technical Committee ISO/TC 35, Paints and varnishes.

This third edition cancels and replaces the second edition, ISO 3856/1-1983, of which it constitutes a minor revision.

Paints and varnishes — Determination of "soluble" metal content —

Part 1: Determination of lead content — Flame atomic absorption spectrometric method and dithizone spectrophotometric method

0 Introduction

This International Standard is a part of ISO 3856, *Paints and varnishes — Determination of "soluble" metal content.*

1 Scope and field of application

This part of ISO 3856 describes two methods for the determination of the lead content of the test solutions, prepared according to ISO 6713 or other suitable International Standards.

The methods are applicable to paints having "soluble" lead contents in the range of about 0.05 to 5% (m/m).

The flame atomic absorption spectrometric (AAS) method (clause 3) should be used as the referee method in cases of dispute. Other methods can be used by agreement between the interested parties. If a spectrophotometric method is agreed, the dithizone spectrophotometric method (clause 4) should be used.

2 References

ISO 385/1, Laboratory glassware — Burettes — Part 1: General requirements. 1)

ISO 648, Laboratory glassware — One-mark pipettes.

ISO 1042, Laboratory glassware — One-mark volumetric flasks.

ISO 3696, Water for laboratory use — Specifications.²⁾

ISO 4800, Laboratory glassware — Separating funnels and dropping funnels.

ISO 6713, Paints and varnishes — Preparation of acid extracts from paints in liquid or powder form.

3 Flame atomic absorption spectrometric method

3.1 Principle

Aspiration of the test solution into an acetylene/air flame. Measurement of the absorption of the selected spectral line, emitted by a lead hollow-cathode or lead discharge lamp, in the region of 283,3 nm.

3.2 Reagents and materials

During the analysis, use only reagents of recognized analytical grade and only water of at least grade 3 purity according to ISO 3696.

3.2.1 Hydrochloric acid, c(HCI) = 0.07 mol/l.

Use the hydrochloric acid, identical to that used for the preparation of the test solutions in accordance with ISO 6713. (See 3.4.2.)

3.2.2 Acetylene, commercial grade, in a steel cylinder.

3.2.3 Compressed air.

¹⁾ At present at the stage of draft. (Partial revision of ISO/R 385-1964.)

²⁾ At present at the stage of draft.

ISO 3856/1-1984 (E)

3.2.4 Lead, standard stock solution containing 1 g of Pb per litre.

Either

a) transfer the contents of an ampoule of standard lead solution containing exactly 1 g of Pb into a 1 000 ml one-mark volumetric flask, dilute to the mark with the hydrochloric acid (3.2.1) and mix well;

or

b) weigh, to the nearest 1 mg, 1,598 g of lead nitrate [Pb(NO₃)₂] (previously dried for 2 h at 105 °C), dissolve in the hydrochloric acid (3.2.1) in a 1 000 ml one-mark volumetric flask, dilute to the mark with the same hydrochloric acid and mix well.

1 ml of this standard stock solution contains 1 mg of Pb.

3.2.5 Lead, standard solution containing 100 mg of Pb per litre.

Prepare this solution on the day of use.

Pipette 100 ml of the standard stock solution (3.2.4) into a 1 000 ml one-mark volumetric flask, dilute to the mark with the hydrochloric acid (3.2.1) and mix well.

1 ml of this standard solution contains 100 µg of Pb.

3.3 Apparatus

Ordinary laboratory apparatus and

- **3.3.1 Flame atomic absorption spectrometer**, suitable for measurements at a wavelength of 283,3 nm and fitted with a burner fed with acetylene and air.
- 3.3.2 Lead hollow-cathode lamp or lead discharge lamp.
- **3.3.3 Burette**, of capacity 50 ml, complying with the requirements of ISO 385/1.
- **3.3.4 One-mark volumetric flasks**, of capacity 100 ml, complying with the requirements of ISO 1042.

3.4 Procedure

3.4.1 Preparation of the calibration graph

3.4.1.1 Preparation of the standard matching solutions

Prepare these solutions on the day of use.

Into a series of six 100 ml one-mark volumetric flasks (3.3.4), introduce from the burette (3.3.3), respectively, the volumes of the standard lead solution (3.2.5) shown in the following table, dilute each to the mark with the hydrochloric acid (3.2.1) and mix well.

Standard matching solution No.	Volume of the standard lead solution (3.2.5)	Corresponding concentration of Pb in the standard matching solution
	ml	μg/ml
0 *	0	0
1	2,5	2,5
2	5	5
3	10	10
4	20	20
5	30	30

Blank matching solution.

3.4.1.2 Spectrometric measurements

Install the lead spectral source (3.3.2) in the spectrometer (3.3.1) and optimize the conditions for the determination of lead. Adjust the instrument in accordance with the manufacturer's instructions and adjust the monochromator to the region of 283,3 nm in order to obtain the maximum absorbance.

Adjust the flow of the acetylene (3.2.2) and of the air (3.2.3) according to the characteristics of the aspirator-burner, and ignite the flame. Set the scale expansion, if fitted, so that the standard matching solution No. 5 (see table) gives almost a full-scale deflection.

Aspirate into the flame each of the standard matching solutions (see 3.4.1.1) in ascending order of concentration, and repeat with the standard matching solution No. 4 to verify that the instrument has achieved stability. Aspirate water through the burner between each measurement, taking care to keep the rate of aspiration uniform.

3.4.1.3 Calibration graph

Plot a graph having the masses, in micrograms, of Pb contained in 1 ml of the standard matching solutions as abscissae and the corresponding values of the absorbances, reduced by the reading for the blank matching solution, as ordinates.

3.4.2 Test solutions

3.4.2.1 Pigment portion of the liquid paint and paint in powder form

Use the solutions obtained by the procedure described in subclause 8.2.3 or 8.3.2 of ISO 6713, as appropriate.

3.4.2.2 Liquid portion of the paint

Use the solutions obtained by the procedure described in subclause 9.3 of ISO 6713.

3.4.2.3 Other test solutions

Use the solutions obtained by other specified or agreed procedures (for example, by the procedure described in sub-clause 8.3.1.4 of ISO 6713).

3.4.3 Determination

Measure first the absorbance of the hydrochloric acid (3.2.1) in the spectrometer (3.3.1) after having adjusted it as described in 3.4.1.2. Then measure the absorbance of each test solution (3.4.2) three times and, afterwards, that of the hydrochloric acid again. Finally, re-determine the absorbance of standard matching solution No. 4 (see 3.4.1.1) in order to verify that the response of the apparatus has not changed. If the absorbance of a test solution is higher than that of the standard matching solution with the highest lead concentration, dilute the test solution appropriately (dilution factor F) with a known volume of the hydrochloric acid (3.2.1).

3.5 Expression of results

3.5.1 Calculations

3.5.1.1 Pigment portion of the liquid paint

Calculate the mass of "soluble" lead in the hydrochloric acid extract obtained by the method described in sub-clause 8.2.3 or 8.3.2 of ISO 6713, using the equation

$$m_0 = \frac{a_1 - a_0}{10^6} \times V_1 \times F_1$$

where

 a_0 is the lead concentration, in micrograms per millilitre, of the blank test solution prepared by the method described in sub-clause 8.4 of ISO 6713;

 a_1 is the lead concentration, in micrograms per millilitre, of the test solution obtained from the calibration graph;

 F_1 is the dilution factor referred to in 3.4.3;

 $m_{\rm 0}$ is the mass, in grams, of "soluble" lead in the hydrochloric acid extract;

 V_1 is the volume, in millilitres, of the hydrochloric acid plus ethanol used for the extraction described in sub-clause 8.2.3 or 8.3.2.4 of ISO 6713 (assumed to be 77 ml or 502 ml respectively).

Calculate the "soluble" lead content of the pigment portion of the paint using the equation

$$c_{\text{Pb}_1} = m_0 \times \frac{10^2}{m_1} \times \frac{P}{10^2} = \frac{m_0 \times P}{m_1}$$

where

 $c_{\mathrm{Pb_1}}$ is the "soluble" lead content, of the pigment portion of the paint, expressed as a percentage by mass of the paint;

 m_1 is the mass, in grams, of the test portion taken to prepare the solution described in sub-clause 8.2.3 or 8.3.2.4 of ISO 6713;

P is the pigment content of the liquid paint, expressed as a percentage by mass, obtained by the appropriate method described in clause 6 of ISO 6713.

3.5.1.2 Liquid portion of the paint

Calculate the mass of lead in the solution (extract), obtained by the method described in sub-clause 9.3 of ISO 6713, using the equation

$$m_2 = \frac{b_1 - b_0}{10^6} \times V_2 \times F_2$$

where

 b_0 is the lead concentration, in micrograms per millilitre, of the blank test solution prepared by the method described in sub-clause 6.5 of ISO 6713;

 b_1 is the lead concentration, in micrograms per millilitre, of the test solution obtained from the calibration graph;

 F_2 is the dilution factor referred to in 3.4.3.;

 m_2 is the mass, in grams, of lead in the liquid portion of the paint;

 V_2 is the volume, in millilitres, of the solution obtained by the method described in sub-clause 9.3 of ISO 6713 (= 100 ml).

Calculate the lead content of the liquid portion of the paint, using the equation

$$c_{\text{Pb}_2} = \frac{m_2}{m_3} \times 10^2$$

where

 c_{Pb_2} is the lead content of the liquid portion of the paint, expressed as a percentage by mass of the paint;

 m_3 is the total mass, in grams, of paint comprising a "set" as described in sub-clause 6.4 of ISO 6713.

3.5.1.3 Liquid paint

Calculate the total "soluble" lead content of the liquid paint as the sum of the results obtained according to 3.5.1.1 and 3.5.1.2, thus

$$c_{\mathsf{Pb}_3} = c_{\mathsf{Pb}_1} + c_{\mathsf{Pb}_2}$$

where $c_{\rm Pb_3}$ is the total "soluble" lead content of the paint, expressed as a percentage by mass.

3.5.1.4 Paint in powder form

The total "soluble" lead content of the paint in powder form is obtained by appropriate modification of the calculations given in 3.5.1.1.

3.5.1.5 Other test solutions

If the test solutions were prepared by methods other than those given in ISO 6713 (see 3.4.2.3), it will be necessary to modify the equations for the calculation of lead content given in 3.5.1.1 and 3.5.1.2.

3.5.2 Precision

No precision data are currently available.

ISO 3856/1-1984 (E)

4 Dithizone spectrophotometric method

4.1 Principle

Extraction of the lead from the test solution with a solution of dithizone in 1,1,1-trichloroethane. Spectrophotometric measurement of the red colour of the lead dithizonate at a wavelength of about 520 nm.

4.2 Reagents

During the analysis, use only reagents of recognized analytical grade and only water of at least grade 3 purity according to ISO 3696.

4.2.1 Hydrochloric acid, c(HCI) = 0.07 mol/I.

Use the hydrochloric acid, identical to that used for the preparation of the test solutions in accordance with ISO 6713. (See 4.4.2.)

4.2.2 Buffer solution.

Dissolve 3 g of potassium cyanide, 6 g of sodium metabisulfite and 5 g of ammonium citrate in about 200 ml of water, add 325 ml of ammonia solution (ϱ approximately 0,880 g/ml) and dilute to 1 litre with water.

WARNING — Note should be taken of the extreme toxicity of potassium cyanide and its solutions.

4.2.3 Hydroxylammonium chloride, 20 % (m/m) solution.

Dissolve 20 g of hydroxylammonium chloride in about 75 ml of water and make up to 100 ml.

WARNING — Hydroxylammonium chloride is toxic, corrosive and irritant. Avoid contact with eyes and skin.

4.2.4 1,1,1-trichloroethane, free from inhibitors.

4.2.5 Dithizone, stock solution.

Dissolve 40 mg of dithizone in 100 ml of the 1,1,1-trichloro-ethane (4.2.4).

Store in a refrigerator at 4 °C or below. Discard 7 days after preparation.

4.2.6 Dithizone, working solution.

Prepare this solution on the day of use.

Dilute 10 ml of the dithizone stock solution (4.2.5) to 100 ml with the 1,1,1-trichloroethane (4.2.4).

4.2.7 Lead, standard stock solution containing 1 g of Pb per litre.

Either

a) transfer the contents of an ampoule of standard lead solution containing exactly 1 g of Pb into a 1 000 ml one-mark volumetric flask, dilute to the mark with the hydrochloric acid (4.2.1) and mix well;

OI

b) weigh, to the nearest 1 mg, 1,598 g of lead nitrate [Pb(NO₃)₂] (previously dried for 2 h at 105 °C), dissolve in the hydrochloric acid (4.2.1) in a 1 000 ml one-mark volumetric flask, dilute to the mark with the same hydrochloric acid and mix well.

1 ml of this standard stock solution contains 1 mg of Pb.

4.2.8 Lead, standard solution containing 10 mg of Pb per litre.

Prepare this solution on the day of use.

Pipette 10 ml of the standard stock solution (4.2.7) into a 1 000 ml one-mark volumetric flask, dilute to the mark with the hydrochloric acid (4.2.1) and mix well.

1 ml of this standard solution contains 10 μg of Pb.

4.3 Apparatus

Ordinary laboratory apparatus and

- **4.3.1 Spectrophotometer**, suitable for measurements at a wavelength of about 520 nm, fitted with cells of optical path length 5 mm.
- **4.3.2** Separating funnels, of capacity 50 ml, complying with the requirements of ISO 4800.
- **4.3.3** Pipette, of capacity 10 ml, complying with the requirements of ISO 648.
- **4.3.4 Burette,** of capacity 10 ml, complying with the requirements of ISO 385/1.
- **4.3.5 One-mark volumetric flasks**, of capacity 100 ml, complying with the requirements of ISO 1042.

4.4 Procedure

4.4.1 Preparation of the calibration graph

4.4.1.1 Preparation of standard colorimetric solutions

Prepare these solutions on the day of use.

Transfer 15 ml portions of the buffer solution (4.2.2) to each of a series of six 50 ml separating funnels (4.3.2), followed by 1 ml of the hydroxylammonium chloride solution (4.2.3) and 5 ml of the dithizone solution (4.2.6). Stopper the funnels and shake vigorously for about 30 s. Allow to stand until the layers separate and then run off and discard the lower layers. Dry the insides of the stems of the separating funnels with strips of filter paper.

Into the six separating funnels, introduce from the 10 ml burette (4.3.4), respectively, the volumes of the standard lead solution (4.2.8) shown in the following table. Then, from the pipette (4.3.3), add 10 ml of the 1,1,1-trichloroethane (4.2.4). Stopper the funnels and shake vigorously for 30 s. Allow the layers to separate and run off the lower layers through small funnels fitted with dry filter papers to absorb any droplets of water, collecting the solutions in separate spectrophotometer cells (4.3.1).

Standard colorimetric solution No.	Volume of the standard lead solution (4.2.8)	Corresponding concentration of Pb in the standard colorimetric solution
	ml	μg/ml
0 *	0	0
1	1	1
2	2	2
3	3	3
4	4	4
5	5	5

^{*} Compensation solution

4.4.1.2 Spectrophotometric measurements

Measure the absorbances of the standard colorimetric solutions (4.4.1.1) with the spectrophotometer (4.3.1) at the wavelength of maximum absorption (about 520 nm) against 1,1,1-trichloroethane (4.2.4) in the reference cell. Before each measurement, rinse the cell with the standard colorimetric solution. Deduct the absorbance of the compensation solution from those of the other standard colorimetric solutions.

4.4.1.3 Calibration graph

Plot a graph having the masses, in micrograms, of Pb contained in 1 ml of the standard colorimetric solutions as abscissae and the corresponding values of absorbance as ordinates. If the procedure has been carried out correctly, the calibration graph should be a straight line.

4.4.2 Test solutions

4.4.2.1 Pigment portion of the liquid paint and paint in powder form

Use the solutions obtained by the procedure described in subclause 8.2.3 or 8.3.2 of ISO 6713, as appropriate.

4.4.2.2 Liquid portion of the paint

Use the solutions obtained by the procedure described in subclause 9.3 of ISO 6713.

4.4.2.3 Other test solutions

Use the solutions obtained by other specified or agreed procedures (for example, by the procedure described in subclause 8.3.1.4 of ISO 6713).

4.4.3 Determination

Transfer 15 ml of the buffer solution (4.2.2) and 1 ml of the hydroxylammonium chloride solution (4.2.3) into a 50 ml

separating funnel (4.3.2) and extract with 5 ml of the dithizone solution (4.2.6) as detailed in 4.4.1.1. Transfer, by means of the 10 ml burette (4.3.4), a volume of the test solution (4.4.2) containing 10 to 50 μ g of Pb into the separating funnel containing the previously extracted solution of the reagents.

If 1 ml of the test solution contains higher amounts of lead, dilute the test solution (4.4.2) with a known volume (dilution factor F_1 or F_2 , as appropriate) of the hydrochloric acid (4.2.1), and transfer an aliquot portion of the diluted test solution by means of the 10 ml burette (4.3.4) into the separating funnel containing the previously extracted solution of the reagents.

Swirl the contents of the separating funnel, and allow to stand for a few minutes. Then, from the pipette (4.3.3), add 10 ml of the 1,1,1-trichloroethane (4.2.4). Stopper the funnel and shake vigorously for 30 s. Allow the layers to separate and run off the lower layer through a small funnel with a dry filter paper to absorb any droplets of water, collecting the solution in a spectrophotometer cell (4.3.1).

Measure the absorbance by the procedure given in 4.4.1.2.

4.5 Expression of results

4.5.1 Calculations

4.5.1.1 Pigment portion of the liquid paint

Calculate the mass of "soluble" lead in the hydrochloric acid extract, obtained by the method described in sub-clause 8.2.3 or 8.3.2 of ISO 6713, using the equation

$$m_0 = \frac{10(a_1 - a_0)}{10^6} \times \frac{V_1}{V_3} \times F_1 = \frac{(a_1 - a_0) V_1 F_1}{V_3} \times 10^{-5}$$

where

 a_0 , a_1 , m_0 and V_1 are as defined in 3.5.1.1;

 F_1 is the dilution factor referred to in 4.4.3;

 V_3 is the volume, in millilitres, of the aliquot portion of the hydrochloric acid plus ethanol extract taken for the test.

Calculate the "soluble" lead content of the pigment portion of the paint, using the equation

$$c_{\text{Pb}_1} = m_0 \times \frac{10^2}{m_1} \times \frac{P}{10^2} = \frac{m_0 \times P}{m_1}$$

where $c_{\mathrm{Pb_1}}$, m_1 and P are as defined in 3.5.1.1.

4.5.1.2 Liquid portion of the paint

Calculate the mass of lead in the solution (extract), obtained by the method described in sub-clause 9.3 of ISO 6713, using the equation

$$m_2 = \frac{10(b_1 - b_0)}{10^6} \times \frac{V_2}{V_4} \times F_2 = \frac{(b_1 - b_0)V_2F_2}{V_4} \times 10^{-5}$$

where

 b_0 , b_1 , m_2 and V_2 are as defined in 3.5.1.2;

 F_2 is the dilution factor referred to in 4.4.3;

 V_4 is the volume, in millilitres, of the aliquot portion of the solution taken for the test.

ISO 3856/1-1984 (E)

Calculate the lead content of the liquid portion of the paint, using the equation

$$c_{\text{Pb}_2} = \frac{m_2}{m_3} \times 10^2$$

where $c_{\rm Pb_2}$ and m_3 are as defined in 3.5.1.2.

4.5.1.3 Liquid paint

Calculate the total "soluble" lead content of the liquid paint as the sum of the results obtained according to 4.5.1.1 and 4.5.1.2, thus

$$c_{\mathsf{Pb}_3} = c_{\mathsf{Pb}_1} + c_{\mathsf{Pb}_2}$$

where $c_{\mathrm{Pb_3}}$ is as defined in 3.5.1.3.

4.5.1.4 Paint in powder form

The total "soluble" lead content of the paint in powder form is obtained by appropriate modification of the calculations given in 4.5.1.1.

4.5.1.5 Other test solutions

If the test solutions were prepared by methods other than those given in ISO 6713 (see 4.4.2.3), it will be necessary to modify the equations for the calculation of lead content given in 4.5.1.1 and 4.5.1.2.

4.5.2 Precision

No precision data are currently available.

5 Test report

The test report shall contain at least the following information:

- a) the type and identification of the product tested;
- b) a reference to this International Standard (ISO 3856/1);
- c) the method for the separation of the solid portion of the product under test according to ISO 6713, clause 6 (method A, B or C), where appropriate 1);
- d) the solvent or the solvent mixture used for the extraction, where appropriate $^{1)}$;
- e) the method of determination (AAS or dithizone spectrophotometric) used;
- f) the results of the test, expressed as a percentage by mass of the product: either
 - the "soluble" lead content of the pigment portion of the paint, the lead content of the liquid portion of the paint and the total "soluble" lead content of the liquid paint, or
 - the total "soluble" lead content of the paint in powder form;
- g) any deviation, by agreement or otherwise, from the test procedure specified;
- h) the date of the test.

¹⁾ Not required for paints in powder form (see clause 7 of ISO 6713).

SRI LANKA STANDARDS INSTITUTION

The Sri Lanka Standards Institution (SLSI) is the National Standards Organization of Sri Lanka established under the Sri Lanka Standards Institution Act No. 6 of 1984 which repealed and replaced the Bureau of Ceylon Standards Act No. 38 of 1964. The Institution functions under the Ministry of Science & Technology.

The principal objects of the Institution as set out in the Act are to prepare standards and promote their adoption, to provide facilities for examination and testing of products, to operate a Certification Marks Scheme, to certify the quality of products meant for local consumption or exports and to promote standardization and quality control by educational, consultancy and research activity.

The Institution is financed by Government grants, and by the income from the sale of its publications and other services offered for Industry and Business Sector. Financial and administrative control is vested in a Council appointed in accordance with the provisions of the Act.

The development and formulation of National Standards is carried out by Technical Experts and representatives of other interest groups, assisted by the permanent officers of the Institution. These Technical Committees are appointed under the purview of the Sectoral Committees which in turn are appointed by the Council. The Sectoral Committees give the final Technical approval for the Draft National Standards prior to the approval by the Council of the SLSI.

All members of the Technical and Sectoral Committees render their services in an honorary capacity. In this process the Institution endeavours to ensure adequate representation of all view points.

In the International field the Institution represents Sri Lanka in the International Organization for Standardization (ISO), and participates in such fields of standardization as are of special interest to Sri Lanka.

Printed at the Sri Lanka Standards Institution, 17, Victoria Place, Elvitigala Mawatha, Colombo 08.

SLS CERTIFICATION MARK

The Sri Lanka Standards Institution is the owner of the registered certification mark shown below. Beneath the mark, the number of the Sri Lanka Standard relevant to the product is indicated. This mark may be used only by those who have obtained permits under the SLS certification marks scheme. The presence of this mark on or in relation to a product conveys the assurance that they have been produced to comply with the requirements of the relevant Sri Lanka Standard under a well designed system of quality control inspection and testing operated by the manufacturer and supervised by the SLSI which includes surveillance inspection of the factory, testing of both factory and market samples.

Further particulars of the terms and conditions of the permit may be obtained from the Sri Lanka Standards Institution, 17, Victoria Place, Elvitigala Mawatha, Colombo 08.

