ලංකා පුමිති 97: 19**7**0 CEYLON STANDARD 97: 1970

විශ්ව දශම වර්ග කිරීම; U.D.C. 621-882-1/3: 669-141-24

විට්වන් ඉස්කුරුප්පූ පොට සහිත මෘදු වානේ හය පට්ටම් හා හතරැස් කළු බදුණ ඉස්කුරුප්පූ හා මූරිච්චි පිළිබඳ ලංකා පුමිති පිරිවිතර.

Ceylon Standard Specification for Mild Steel Hexagon and Square Black Bolts, Screws and Nuts with Whitworth Threads.

> ලංකා පුමිති කාර්යාංශය BUREAU OF CEYLON STANDARDS

CEYLON STANDARD SPECIFICATION FOR MILD STEEL HEXAGON AND SQUARE BLACK BOLTS, SCREWS AND NUTS WITH WHITWORTH THREADS

C.S. 97: 1970

Gr.6

Copyright Reserved

BUREAU OF CEYLON STANDARDS

53, Dharmapala Mawatha,

COLOMBO 3

Ceylon Standards are subject to periodical revision in order to accommodate the progress made by industry. Suggestions for improvement will be recorded and brought to the notice of the Committees to which the revisions are entrusted.

This Standard does not purport to include all the necessary provisions of a contract.

BUREAU OF CEYLON STANDARDS
53, Dharmapala Mawatha,
Colombo 3.

Telephone: 26051, 26054, 26055. Telegrams: "PRAMIKA"

CEYLON STANDARD SPECIFICATION FOR MILD STEEL HEXAGON AND SQUARE BLACK BOLTS, SCREWS AND NUTS WITH WHITWORTH THREADS

FOREWORD

This Ceylon Standard Specification for Hexagon and Square Black Bolts, Screws and Nuts with Whitworth threads has been prepared by the Drafting Committee on nuts and bolts. It was approved by the Mechanical Engineering Divisional Committee of the Bureau of Ceylon Standards and was authorised for adoption and publication by the Council of the Bureau on 14th August, 1970.

Details of hexagon and square bolts, screws, and nuts with Whitworth screw threads are given in this Standard for use until Metric threads are adopted,

This standard is to be read in conjunction with C.S. 96 1969 Ceylon Standard Specification for parallel screw thread of Whitworth form.

The British and Indian Standards were consulted in the preparation of this Standard and the assistance gained thereform is acknowledged.

1 SCOPE

This Standard relates to ferrous bolts, screws and nuts with Whitworth coarse pitch. The fit shall be medium class and free class for bolts and screws and normal class for nuts.

2. TYPES

- 2·1 Heads or bolts and screws and nuts shall be hexagon or Square (see figures 1 to 9).
- 2.2 Nuts specified herein shall be of the following types:-
 - (a) Single chamfered (full bearing)
 - (b) Washer faced
 - (c) Double chamfered
 - (d) Lock nuts

3. MATERIAL

The steel used for the manufacture of bolts, screws and nuts shall be such that the finished product has

- (a) a minimum ultimate tensile strength of 26 tonf/in² (40.95kgf/mm²) and a minimum elongation of 17 per cent on a gauge length of 5.65 √area
- or (b) a minimum ultimate tensile strength of 28 tonf/in² (44·10kgf/mm²) and a minimum elongation of 14 per cent on a gauge length of 5·65 $\sqrt{\text{area}}$

The choice of either material will normally be at the option of the manufacturer except when the purchaser specifically states which of the two he requires.

4. THREAD FORM

- 4.1 The screw threads shall be of the Whitworth coarse form in accordance with C.S. 96: 1969, Ceylon Standard Specification for parallel screw thread of Whitworth form.
- 4.2 The screw threads may be cut or rolled at the option of the manufacturer and shall comply with the limits and tolerances specified in the aforementioned Standard.

5. WORKMANSHIP

Bolts, screws and nuts shall be neatly and cleanly made and shall be free from burns and bruising of threads.

6. DIMENSIONAL CHARACTERISTICS

6.1 Bolts, screws and nuts shall conform to the demensions and tolerances given in Tables 1 to 3.

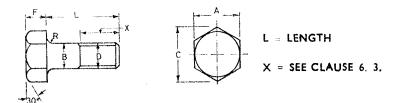


Fig. ! Hexagon Head Bolt

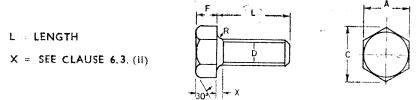


Fig 2 Hexagon Head Screw

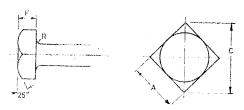
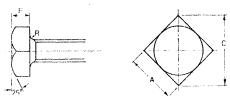
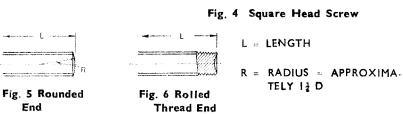




Fig. 3 Square Head Bolt

, ·
田
BL
$\mathbf{I}\mathbf{A}$

Nominal size	Diameter of unthreaded	No. of threads	Width a	Width across flast A hex. & square	Approx.	Approx. max. width	Radius under	Thickne	Thickness of head F
Ω	shank B	per in.				0	8		a ten he nu
	max.	B.S.W.	max.	min.	hex.	square	max.	max.	dasic
(1)	(2)	(3)	(4)	(5)	(9)	(7)	(8)	(6)	(10)
i.	ij		'n.	in.	in.	in.	in,	in.	ņ
1/4	0.280	07	0.445	0.435	0.51	0.63	1/32	0.186	0.166
5/16	0.342	18	0.525	0.515	0.61	0.74	1/32	0.228	0.208
3/8	0.405	16	0.600	0.585	69.0	0.85	1/32	0.270	0.250
1/16	0.468	14	0.710	0.695	0.82	1.00	1/32	0.312	0.292
7/1	0.530	17	0.820	0.800	0.95	1.16	1/32	9.363	0.333
9/16	0.592	17	0.920	0.900	1.06	1.30	3/64	0.405	0.375
5/8	0.665	Ξ	1.010	0.985	1.17	1.43	3/64	0.447	0.417
3/4	0.20	10	1.200	1.175	1.39	1.70	3/64	0.530	0.500
8/2	0.915	6	1.300	1.270	1.50	1.84	1/16	0.673	0.583
	1.040	∞	1.480	1.450	1.71	2.09	1/19	0.706	0.666
1/8	1.175	-	1.670	1.640	1.93	2.36	1/8	0.79	0.75
1/4	1.300	2	1.860	1.815	2.15	2.63	00	0.89	0.83
3/8*	1.425	•	2.050	2.005	2.37	2.90	1/8	0.98	0.92
7/1	1.550	9	2.220	2.175	2.56	3.14	8/1	1.06	1.00
2/8	583	יט ו	2.410	2.365	2.78	3.41	1/8	1.18	1.08
3/4	018-1	ν.,	7.580	7.520	2.98	3.65	1/8	1.27	1.17
	090.7	4.	2.760	2.700	3.19	3.90	8/1	1.43	1.33
4- (4	3.150	260.5	3.64	4.45	3/16	1.60	1.50
7/7		d- (3.550	3.490	4.10	5.02	3/16	1.77	1.67
4.6	1	٠, ن	3.890	3.830	4.49	5.50	3/16	1.93	1.83
	0.00	Š.	4.180	4.080	4.83	5.91	3/16	2.15	3.00
1.4%	-	3.23	4.530	4.430	5.23	6.41	*!-	2.32	100
7/7		3.25	4.850	4.750	5.60	6.86	4	2.48	7,33
3/4*	•	'n	5.180	5.080	5.98	7.33	e ejen	2.65	2.50
	- Florida	(-e-/-	5.550	5.450	6.41	7.85	**/	2.83	2.67
7/1	ļ	2.875	6.380	6.255	7.37	0 05	, vet	3.30	
	dance	2.750	7.300	7.175	6.43	10.32	7	 	, 7°
#14 200		2.625	8.350	8.225	9.64	00,	1 /2	2.87	3.63
	1	2.5	9.450	572.0	10.01	13.36	-	4.30	20

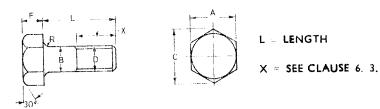


Fig. 1 Hexagon Head Bolt

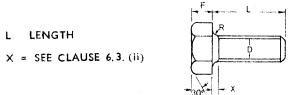


Fig 2 Hexagon Head Screw

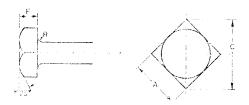


Fig. 3 Square Head Bolt

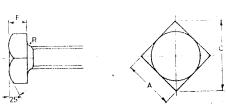


Fig. 4 Square Head Screw

Fig. 5 Rounded End

Fig. 6 Rolled Thread End

L :: LENGTH

R = RADIUS = APPROXIMA. TELY 11 D

જ
BLE
IA

14	Nom.	2715	C	ב		ü	74	5/16	rojat	2/16	-4C)	9/16	rie	m)-	r s-ju	•	- 	·	.ji } r∩joč u…u	ŧï r=1	# inja	એ વ (7 (77		Ů.						609 47 k	n ī	401	٥
13	ss of		and .	- Le	min.	Ē	0.156	0.198	0.240	0.282	0.323	0.345	0.387	0.470	0.553	0.636	0.71	0.79	0.88	96.0	1.02	1:17	77.1	1.42	1.59	00.1	2,5	7.00	67.7	2.40	70.7	£.45 €.45 €.45 €.45 €.45 €.45 €.45 €.45 €	0,10	3.0.5	5.85
12	Thickness of	nead r	hexagon and	square	тах.	ä	0.176	0.218	0.200	0.302	0.343	0.375	0.417	0.500	0.583	0.666	0.75	0.83	0.92	1.00	1.08	1.17	1.33	1.50	1.67	× 6	20.7		55.7	20.7	79.7	3.6	3.55	3.67	4.00
11	Radius	nuder	head	×	max.	i	1/32	1/32	1/32	1/32	1/32	1/32	1/32	1/37	1/32	1/37	3/64	3/64	3/64	3/64	3/64	3/64	3/64	1/16	1/16	1,16	1/10	25/5	75/5	3/32	3/32	32.	S.	1/8	1/8
01	. max.	across	ers		sq.	ij.	0.63	0.74	0.85	1.00	1.16	1.30	1.43		78.	00.	20.7	7.63	98.	3.14	3.41	3.65	3.90	4.45	5.05	2.50	5.91	6.14	6.86	7.33	7.85	9.07	10.32	11.81	13.36
6	Approx. max	width across	corners		hex.	in	0.51	0.61	0.69	0.82	0.95	1.06	1.12	707	20.1	1.00	1.61	 	7.37	2.56	2.78	2.98	3.19	3.64	4.10	4.49	4.83	5.53	2.60	5.98	6.41	7.37	8.43	9.64	10.91
~ «	across				min.	i	0.435	0.515	0.585	0.695	0.800	0.00	0.085	000	1 270	27.1	1.400	240-7	7.005	2.175	2.365	2.520	2.700	3.090	3.490	3.830	4.080	4.430	4.750	5.080	5 . 450	6.255	7.175	8.225	9.325
7	Width across	flats		¥	max.	يا	0.445	0.525	0.600	2.72	0.830	0.650	1.010	200	7.700	200	1.480	0,00	0.000.7	2.730	2.410	2.580	2.760	3.150	3.550	3.890	4.180	4.530	4.850	5.180	5.550	6.380	7.300	8.350	6.450
9	to 1	ds	nch		B.S.F		76	3,0	10	2 %	9	27	0 7	** c	71	·	<u> </u>	э» с	2V 0	o 00) oc	_	-1	. 0	9	vc	īŪ	Ď	4.5	4.5	5.5	4	4	- 43-	ব
7 9 5 1	Number of	threads	per inch		B.S.W.		Ç	30	2 -	0.1		71	77	= -	2	5 \ 1	× ×	·~ (· V	o 4	יטיכ) 10	, 4 , C	. 4	. 4	3.5	3.5	3.25	3.25	, ~	~	2.875	7.75	2.625	2.5
4	shank		inger	ank	d	[2776	7000	0.0000	0.3713	0.4333	0.44.0	0.5585	0.019	0.744	0.867	0.992	1.117	1.242	1.303	1.430	1.740	066.1	7.740	2.490	2.740	2.990	3.235	3.485	3.735	3.980	4.480	4.980	- n.	5.980
~	, 5		haced under	nead and turk on shank	max		100	0.62.0	0.0170	0.3(30	0.4575	0.3000	0.5625	0.625	0.750	0.875	1.000	1.125	1.250	1.375	1.500	1.750	000.6	2.200	200	2.750	3.000	3.250	200	3.750	000.4	4.500	000	000	6.000
-	Diameter		raced	head	max		u c	0.797	246.0	0.405	6.408	0.530	0.592	0.665	0.20	0.915	1.040	1.175	1.300	1.425	1.050	1.003	0.00	7.000			1	1		1					1
-		Nom.	size	۵		1	≅.	14	01/6	nles (01/	41	9/16	milas		1-44		-17.	- 11	rojen	- 1 P.36	njec r	4	1,0	(e + -	£9.00	***	**	4 14	(n eni	4	. 7	 	- (#	ຄິນເ

face of nut (see Clause 0.007 0.009 0.010 for square-Black/Machi max. thread to ned g. Tolerance (19)ness of 7.1) 0.014 0.018 0.020 Fig. 9 Hexagon Lock Nut max. (18) DOUBLE CHAMFERED min. Faced both Thickness of lock nuts F Ė sides max. 16) 1 Ë HEXAGON AND SQUARE NUTS HEXAGON LOCK NUTS 0.250 | 0.150 | 0.185 | 0.180 | 0.250 | 0.240 | 0.210 | 0.200 | 0.312 | 0.302 | 0.260 | 0.250 | 0.250 | (15)min. Œ, in. Black max. 14 Ė max, min. 30,30 13) 'n. Faced both sides 12) Ë Thickness of nut 0.200 0.180 0 0.250 0.230 0 0.312 0.292 0 min. LLI LLI Faced one side max. DOUBLE CHAMFERED 10) i. Fig. 8 Square Nut LABLE 0.200 0.250 0.312 min. 6 ċ Black 0.220 0.270 0.332 max. ij 8 0.63 0.74 0.85 square| Width across Approx. max. width across 2 corners 0.51 0.61 0.69 hex. Ė 9 0.435 0.515 0.585 min. ġ 5 0.445 DOUBLE CHAMFERED Fig. 7 Hexagon Nut max. 3 ڃ M threads per inch B.S.W|B.S.F. Number of 3 25 25 20 20 (7) 20 13 16 Nomina 1/4 5/16 3/8 ij Д

							(C. S. 97
0.011 0.013 0.013	0.014 0.017 0.020	0.020 0.024 0.024	0.026 0.026 0.026	0.030 0.030 0.030	0.035 0.035 0.040	0.040 0.045 0.045	0.050	
0.022 0.026 0.026	375 0 . 375 0 . 365 0 . 028 458 0 . 458 0 . 448 0 . 034 500 0 . 500 0 . 640	0.875 0.865 0.630 0.583 0.583 0.573 0.040 1.000 0.990 0.720 0.666 0.666 0.656 0.048 1.125 1.105 0.810 0.750 0.750 0.730 0.048	1.250 1.230 0.890 0.833 0.833 0.813 0.052 1.375 1.355 0.980 0.916 0.916 0.896 0.052 1.500 1.480 1.060 1.000 1.000 0.980 0.052	1.063 0.060 1.146 0.060 1.229 0.060	2.125 2.105 1.600 1.416 1.416 1.396 0.070 2.375 2.355 1.7701.580 1.5801.560 0.070 2.625 2.605 1.9801.7501.7501.730 0.080	0.080 0.090 0.090	100 110 120	5.000 4.970 3.700 3.333 3.333 3.303 0.130 5.500 5.470 4.030 3.666 3.666 3.636 0.140
900	55 90 00 00 00	000	000 myo	<u> </u>	<u> </u>	000	0000	0.0
111	000 844	0.57	.989. 9.989.	1.06	5,33	.212	.98.	.636
111	375 458 500	583 666 750	833	1.083 1.063 1.166 1.146 1.250 1.229	416 580 750	38321	17 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3333
265 290 323	- <u>0 0 0</u>	000	1000		311	555	22.0 4.00	3.6
0.26		.58 .75 .75	9.69	. 25.	.583. .583.	916.	.417 .666 .000	.333
275 0.7 300 0.2 333 0.3	410 0 · 3 490 0 · 4 550 0 · 5	223	980	201 301 301	8011	20 1 80 2	302	- 203
000	000	000	9.01	17.7	1.7	1.6.4	906	3.7.
0.375 0.365 0.2 0.437 0.427 0.3 0.500 0.490 0.3	0.562 0.552 0.4 0.687 0.677 0.4 0.750 0.740 0.5	.865 .990 .105	. 230 . 355 . 480	1.625 1.605 1.160 1.083 1.083 1.750 1.750 1.250 1.166 1.166 1.875 1.875 1.855 1.430 1.250 1.250 1.250	105 355 605	2.845 2.1501.915 1.915 1.882 3.095 2.320 2.083 2.083 2.051 3.345 2.480 2.250 2.250 2.212	3-625 3-595 2-650 2-417 2-417 2-387 0-4000 3-970 3-030 2-666 2-666 2-666 2-666 0-666	970 470
3750 3700 000	87 87 80 90	2007 1000	07.0	500	200	4444	<u> </u>	4.7.
6.00 6.40	00.00	0.8. 1.00	1.37	1.62	2.12	2.875 3.125 3.375	500	500
0.375 0.355 0.437 0.417 5.500 0.480	0.562 0.542 0.687 0.668 0.750 0.720	0.875 0.835 1.000/0.960 1.125 1.080	955			70.70.70	200 244	
000	000	-0.01 -0.03	1:34	1.565 1.690 1.815	2.065 2.315 2.525	3.77	20.85 20.85 30.85	4.850
.37 .43 .500	. 562 . 750	875 000 125	1.250 1.190 1.375 1.315 1.500 1.440	1.625 1.750 1.875	2.125 2.375 2.625	2.875 2.775 3.125 3.025 3.375 3.275	3.625 3.525 4.000 3.850 4.500 4.350	5.000 5
500	000	<u> </u>				366	w 4.4	5.6
0.375 0.437 0.500	0.562 0.687 0.750	0.875 1.000 1.125	1.250 1.375 1.500	1.625 1.750 1.875	2.125 2.375 2.625	2.875 3.125 3.375	3.625 4.000 4.500	5.500
200					000	ninin	w4.4	N, N,
0.395 0.467 0.530	0.602 0.728 0.810	0.935 1.060 1.205	1.330 1.455 1.580	1.725 1.850 1.975	2.225 2.475 2.775	3.025 3.275 3.525	3.775 4.200 4.700	5.200
89.6	1.43			200				יי יי
		2.36	3.14	3.65 3.90 4.45	5.02 5.50 5.91	6.41 6.86 7.33	7.85 9.02 10.32	11.81
0.82 0.95 1.06	1.17 1.39 1.50	1.71 1.93 2.15	2.37 2.56 2.78	2.98 3.19 3.64	33	2008		4-1
			2.7.	34.4	4·10 4·49 4·83	5.23	6.41 7.57 8.43	9.64
0.695 0.800 0.900	0.985 1.175 1.270	1.450 1.640 1.815	2.005 2.175 2.365	2.520 2.700 3. 0 90	3.490 3.830 4.060	800	55.50	225 325
						4.430 4.750 5.080	5.450 6.255 7.175	9.3
0.710 0.820 0.920	1.010 1.200 1.300	1.480 1.670 1.860	2.050 2.220 2.410	2.580 2.760 3.150	3.550 3.890 4.180	4.530 4.850 5.180	5.550 6.380 7.300	8.350
000			777	35.5	₩. 4	4410	40.50	9.
18 16 16	14 11 11	500	∞ ∞ ∞	677	200	~44 ~~~	444	2.505 4 8.350 8.225 9.64 1 2.500 4 9.450 9.325 10.91 1
12 12 12	11 10 9	8 1-1-	9 9 5	v 4.4 v	4. w. w.	3.25 3.25 3	3 2.875 2.750	2.500
9 9		 	* *				622	2
7/16 1/2 9/16	5/8 3/4 7/3	1/8	3/8* 1/2 5/8*	3/4	3/4	1/i* 1/2 3/4*	1/2	1/2
				7 7 7	778	mmm	44v	6.00

6.2 Length of bolts and screws

- 6.2.1 The nominal length of a bolt or screw shall be the distance from the underside of the head to the further end of the shank including any chamfer or radius.
- 6.2.2 The recommended stock sizes of black bolts are indicated in Table 7. (See Appendix).
- 6.2.3 The permissible tolerance on the nominal length shall be as given in Table 4 below:-

TABLE 4
TOLERANCES ON NOMINAL LENGTH

Nominal length	Diameter	Tolerance on length
in•	in.	in.
All lengths	Below 1 in.	+ 1/8in., - 0
: 	1 in. and over	+ 3/16 in., - 0

6.3 Length of screw thread

6.3.1 Bolts the length of thread shall be such that when a mechined nut is screwed as far as possible on to the bolt by hand the distance between the underside of the bolt head and the nearest face of the nut shall, be not more than the nominal length of the bolt minus the values given in (i) or (ii) below as applicable.

(i) Bolts as forged

Length of bolt	All diameters up to and including $\frac{1}{2}$ in.	All diameters over $\frac{1}{3}$ in.
in.		
Up to and including 4	2 diameters	1½ diameters
Over 4 and up to and including 8	2 diameters	2 diameters
Over 8	2½ diameters	2½ diameters

(ii) Bolts faced under the head with or without turning on the shank.

Length of bolt	All diameters
All lengths	2 diameters

Bolts that are too short for minimum thread shall be threaded as screws

6.3.2 Screws - screws shall be threaded to permit a standard screw ring gauge to be screwed by hand to within a distance from the underside of the head as follows:-

Threads per inch	Distance from underside of head
16 and under Over 16 up to and	2 × pitch
including 20	$2\frac{1}{2}$ × pitch
Over 20	3 × pitch

6.4 Ends of bolts and screws

The ends of bolts and screws may at the option of the manufacturer, be finished with either a flat chamfer with a 90° included angle to a depth slightly exceeding the depth of thread, or with a radius approximately equal to 1½ times the nominal diameter of shank. When bolts and screws are made with rolled threads the lead formed at the end of the bolt or screw by the thread rolling operation may be regarded as providing the necessary chamfer to the end, no other machining operation being necessary, and the end shall be reasonable square with the centre line of the shank.

6.5 Chamfering and facing

6.5.1 Bolts and screws - Hexagon bolt heads and screw heads shall be chamfered at an angle of approximately 30" and square heads at an angle of approximately 25° on their upper faces. The diameter of the ring formed by the chamfer on the upper face of the bolt or set screw head shall not be smaller than 90 per cent of the minimum across flats dimension (see Fig. 10). The lower or bearing face shall be machined only if specified by the purchaser.

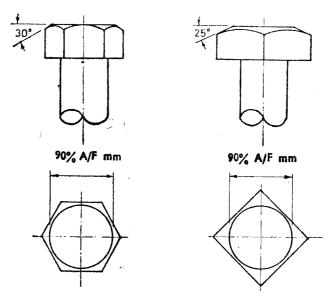


Fig. 10.

- 6.5.2 Nuts Hexagon and square These shall be chamfered at an angle of appoximately 25 in. in one or both faces at the option of the manufacturer. They shall be machined on one or both faces only when so specified.
- 6.5.3 Unmachined lock nuts These shall be chamfered at an angle of approximately 30° on one or both faces at the option of the manufacturer. They shall be machined and chamfered on both faces only when so specified.

7. DETAIL REQUIREMENTS

- 7.1 Squareness of nut facing The bearing surface of unmachined (black) nuts shall be square to the axis of the thread of the nut within the tolerances given in Column 18 of Table 3. The bearing surface of machined nuts shall be square to the axis of the thread of the nut within the tolerances given in column 19 of Table 3.
- 7.2 Heads of bolts and screws, and the nuts shall be ture hexagons or true squares and the body of the bolts and screws and the thread of the nut shall be concentric with the hexagons or squares.

8. FINISH

The surface of bolts, screws and nuts may be finished bright in the case of machined surfaces if so required by the purchaser.

9. SAMPLING

- 9.1 Lot All nuts or bolts of one consignment of the same size, type and manufactured under similar processes of production shall constitute a lot.
- 9.2 The number of nuts or bolts to be selected from a lot shall depend upon the size of the lot and shall be in accordance with column 1 to 3 of Table 5. All these nuts or bolts shall be taken at random form the lot.
- 9.3 If the nuts/bolts in the lot are packed in different bags/cases a suitable number of bags/cases (not less than 20 per cent of the total in the lot subject to a minimum of 2) shall be chosen at random. From each of the bags/cases so chosen, an approximately equal number of nuts/bolts shall be picked up from its different parts so as to obtain the required number of nuts/bolts specified in Table 5.

TABLE 5.

SCALE OF SAMPLING AND CRITERIA FOR CONFORMITY

Lot Size		Visual Characteristics	ristics		Q	Dimensional Characteristics	cteristics	
	Sample	Sample size	Ac	Re	Sample	Sample size	Ac	Re
(1)	(2)	(3)	(+)		(5)	(9)	(2)	
Up to 500	First Second	50 100	79	2	First Second	20 40	01	77
501 to 800	First Second	75 150	4-00	0,0	First Second	25 50	0 7	
801 to 1,300	First Second	100 200	511	12	First Second	35	7	<i>~</i> ~
1,301 to 3,200	First Second	150	7	91 91	First Second	50	~ €	चे च
3,201 to 8,000	First Second	. 400	9 24	25	First Second	75 150	75	9 9
8,001 to 22,000	First Second	300	12 35	36	First Second	100	41 0	99
over 22,000	First Second	1,000	4 4	44	First Second	150 300	3	တ တ
,	Ac	c = Acceptance Number	Number		R	Re = Rejection Number	Number	

- · 4 Visual Characteristics All the nuts or bolts drawn under Clause 9.2 shall be first examined for visual characteristics like type, finish workmanship, etc. If in the first sample, the number of defective nuts/bolts is less than or equal to the corresponding acceptance number, the lot shall be declared as conforming to the requirements for the visual characteristics. If the number of defectives is greater than or equal to the corresponding rejection number, the lot shall be deemed as not meeting the requirements for the visual characteristics. If the number of defectives is greater than the acceptance number but less than the rejection number, a second sample of twice the number of nuts/bolts selected as the first sample shall be taken to determine the conformity or otherwise of the lot. number of defectives found in the first and second samples shall be combined and if the combined number of defectives is less than or equal to the corresponding acceptance number, the lot shall be declared as conforming to the requiremts: otherwise not.
- 9.5 Dimensional Characteristics The lot which has been found satisfactory in respect of visual characteristics (see Clause 9.4) shall next be tested for dimensional characteristics like diameter, length, pitch, etc. The nuts/bolts for this purpose shall be taken at random from those already drawn (see Clause 9.2 and Column 1 of Table 5) in accordance with Columns 5 and 6 of Table 5, and tested for the dimensional characteristics. If the number of nuts/bolts failing to satisfy the requirements for these characteristics is less than or equal to the corresponding acceptance number given in Col. 7 of Table 5. The lot shall be declared to have met the requirements of the specification in respect of these characteristics. If the number of defectives is greater than or equal to the rejection number, given in Column 7 of Table 5, the lot shall be deemed as not conforming to these characteristics. In case the number of defectives lies in between the acceptance and rejection numbers, a second samble of double the size shall be taken and inspected for the dimensional characteristics and inference drawn accordingly.

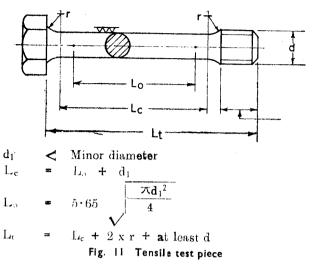
9.6 Tensile Strength - The test for tensile strength shall be carried out on bolts taken at random from those which have passed the tests given in Clauses 9.4 and 9.5. The number of bolts to be drawn for the tensile test shall be as shown in Table 6.

TABLE 6
SCALE OF SAMPLING FOR TENSILE TEST

Lot size (1)	Sample size (2)	Acceptance No.
Up to 800	5	0
801 to 3,200	10	0
3,201 to 8,000	15	0
8,001 to 22,000	20	0
Over 22,000	30	0

If the number of defectives is less than or equal to the corresponding acceptance number in column (3) of Table 6 the lot shall be deemed as conforming to the standard; otherwise not.

10. EXAMINATION AND TESTS


The samples drawn in accordance with the sampling procedure shall be tested in the following order—

- (a) visually examined for manufacturing defects.
- (b) examined for dimensional characteristics.
- (c) physical tests.

11. METHODS OF TEST

11.1 Tensile test - Tensile test shall be conducted in accordance with C.S. 12/1967, Method of tonsile testing of steel products other than sheet, strip, wire and tube, on a test piece as shown in fig. 11. A minimum screw length equal to Lt shall be used in order to determine the elongation for a gauge length

$$L_o = 5 \cdot 65 \sqrt{\frac{\times d^2}{4}}$$

In the case of bolts and screws above 5/8 in diameter any reduction over 25 percent in shank diameter (which is approximately equal to 45 percent in area) shall not be permitted in the preparation of the test piece. In such cases the test piece shall be prepared as shown in Fig. 12 below:-

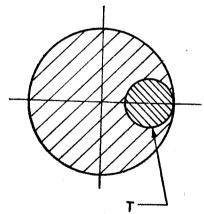


Fig. 12 Test piece for larger diameters

The tensile strength and elongation shall comply with the value specified in Clause 3.

12. CONFORMITY TO STANDARD

If the number of defectives exceed the corresponding number given in Table 5 and Table 6 the batch represented by them shall be deemed not to conform to this standard.

13. PACKING

All black grade threaded fasteners shall be packed in bags or wooden boxes, the weight of individual package being $\frac{1}{2}$ cwt. or 1 cwt.

APPENDIX TABLE 7.

STOCK SIZES OF STEEL HEXAGON HEAD BLACK BOLTS

											С.
1	12							×	×	×	×
	1							×	×	×	×
	10							×	×	×	×
	6							×	×	×	×
İ	83						The second comments	×	×	×	ı
l	∞							×	×	×	×
E S	73							×	×	×	ļ
СН	2						**	×	×	×	×
Z	63							×	×	×	1
ı Z	9				×		×	×	×	×	×
П					×		×	×	×	×	×
T H	3				×		×	×	×	×	×
U Z	4.				×		×	×	×	×	×
LE	4			×	×	×	×	×	×	×	×
J.	33.			×	×	×	×	×	×	×	×
∢ Z	~		×	×	×	×	×	×	×	×	×
M I	23		×	×	×	×	×	×	×	×	×
0	7		×	×	×	×	×	×	×	×	×
Z			×	×	×	×	×	×	×	×	×
	-67		×	×	×	×	×	×	×	×	
	110		×	×	×	×	×	×	×	Administration of the second	
	-		×	×	×	×	×	×			
	w 4		×	×	×			The second of			
	w/m	1	×	×	×						
	-403		×			********					
Nominal size	Ω	in.	1/4	91/9	3/8	91/2	1/2	2 /8	3/4	8/2	

NOTE: Stock sizes for screws are as above, but are restricted to 4 in. maximum length

BUREAU OF CEYLON STANDARDS

The Bureau of Ceylon Standards (BCS) is the national standards organisation of Ceylon and was established by the Hon. Minister of Industries & Fisheries, as provided for by the Bureau of Ceylon Standards Act, No. 38 of 1964.

The principal objects of the Bureau as set out in the Act are to promote standards in industry and commerce, prepare national standard specifications and codes of practice and operate a Standardisation Marks Scheme and provide testing facilities, as the need arises.

The Bureau is financed by Government grants and the sale of its publications. Financial and administrative control is vested in a Council appointed in accordance with the provisions of the Act.

The detailed preparation of standard specifications is done by Drafting Committees composed of experts in each particular field assisted by permanent officers of the Bureau. These Committees are appointed by Divisional Committees, which are appointed by the Council. All members of the Drafting and Divisional Committees render their services in an honorary capacity. In preparing the standard specifications the Bureau endeavours to ensure adequate representation of all view points.

In the international field the Bureau represents Ceylon in the International Organinisation for Standardisation (ISO) and will participate in such fields of standardisation as are of special interest to Ceylon.