SLS 1054 : 1995
(IS0 8731 - 2 : 1992)

Sri Lanka Standard

BANKING - APPROVED ALGORITHMS FOR MESSAGE
;- AUTHENTICATION - PART - 2 : MESSAGE
AUTHENTICATOR ALGORITHM

Gr. K

SRI LANKA STANDARDS INSTITUTION

SLS 1054 : 1995
ISO 8731-2 : 1992

Sri Lanka Standard
BANKING - APPROVED ALGORITHMS FOR MESSAGE AUTHENTICATION
PART 2 : MESSAGE AUTHENTICATOR ALGORITHM

NATIONAL FOREWORD

This Sri Lanka Standard is identical with IS0 8731-2 : 1992 Banking
~Approved algorithms for message authentication - Part 2 - Message
authenticator algorithm, published by the Internatioani Organization
for Standardization (IS0).

Terminology and conventions

The text of the International standard has been accepted as suitable
for publication, without deviation, as a Sri Lanka Standard.
Howevers, certain terminology and conventions are not identical with
those used in Sri Lanka Standards, attention is therefore drawn to the
following:

a) Wherever the words 'International Standard/Publication’
appear, referring to this standard they should be
interpreted as "Sri Lanka Standard".

Wherever page numbers are quoted, they are ISO page numbers,

CROSS - REFERENCES

International Standard

IS0 8730:1990, Banking - Require
ments for message authentication
(wholesale).

-/1tf.

Corresponding Sri Lanka Standards

SLS 1053 : 1995, Banking Require-
ments for message authentication
(wholesale).

INTERNATIONAL ISO
STANDARD 8731-2

Second edition
1992-09-15

Banking — Approved algorithms for message
authentication —

Part 2:
Message authenticator algorithm

Banque — Algorithmes approuvés pour I’authentification des
messages —

Partie 2: Algorithme d’authentification des messages

Reference number
ISO 8731-2:1992(F)

ISO 8731-2: 1992 (E)

Contents . ' Page
T SCOPE vttt 1
2 Normativereferencescoouiinrniain i, 1
3 Brief descriplion. 1
3.1 GONOIal. . .ottt 1
3.2 Technical . ..o e 1
4 Thesegmentalgorithm 1
4.1 Definition of the functions used inthe algorithm. 1
4.2 Spacificationof thealgorithm..................... ..ot 3
5 Specification of the mode of operation 3
Annexes
A Test examples for implementation of the algorithm. 5
B Specification of MAAINVOM. ... 9
© 1SO 1992

Ali rights reserved. No part of this publication may be reproduced or utilized in any form
or by any means, electronic or mechanical, inciuding photocopying and microfilm, without
permission in writing from the publisher.

International Organization for Standardization

Case Postale 56 ® CH-1211 Genéve 20 ® Switzerland

Printed in Switzerland

—

ISO 8731-2: 1992 (E)

Foreword

ISO (the International Organization for Standardization) is a worldwide
federation of national standards bodies (ISO member bodies). The work
of preparing International Standards is normaily carried out through ISO
technical committees. Each member body interested in a subject for
which a technical committee has been established has the right to be
represented on that committee. International organizations, govern-
mental and non-governmental, in liaison with ISO, also take part in the
work. ISO collaborates closely with the International Electrotechnical
Commission (IEC) on all matters of electrotechnical standardization.

Draft International Standards adopted by the technical committees are
circulated to the member bodies for voting. Publication as an Interna-
tional Standard requires approval by at least 75 % of the member bodies
casting a vote.

International Standard 1SQ 8731-2 was prepared by Technical Committee
ISO/TC 68, Banking and related financial services, Sub-Committee SC 2.
Operations and procedures.

This second edition cancels and replaces the first edition
(1ISO 8731-2:1987), of which it constitutes a technical revision.

ISO 8731 consists of the following parts, under the general title
Banking — Approved algorithms for message authentication:

— Part 1: DEA
— Part 2: Message authenticator algorithm

Annexes A and B of this part of ISO 8731 are for information only.

INTERNATIONAL STANDARD

ISO 8731-2 : 1992 (E)

Banking -- Approved algorithms for message

authentication --

Part 2 :

Message authenticator algorithm

1 Scope

ISO 8731 specifies, in individual parts, approved authentication
algorithms ie. approved as meeting the authentication
requirements specified in I1SO 8730. This part of ISO 8731
deals with the Message Authenticator Algorithm for use in the
calculation of the Message Authentication Code (MAC).

The Message Authenticator Algorithm (MAA) is specifically
designed for high-speed authentication using a mainframe
computer. This is a special purpose algorithm to be used
where data volumes are high, and efficient implementation by
software a desirable characteristic. MAA is also suitable for
use with a programmable calculator.

Test examples are given in annex A, which does not form
part of this part of 1ISO 8731. A further test example is given
as an Annex in ISO 8730.

A specification of MAA in VDM is given in Annex B, which
does not form part of this part of ISO 8731.

2 Normative references

The following standards contain provisions which, through
references in this text, constitute provisions of this part of 1SO
8731. At the time of publication, the editions indicated were
valid. All standards are subject to revision, and parties to
agreements based on this part of ISO 8731 are encouraged to
investigate the possibility of applying the most recent editions
of the standards indicated below. Members of IEC and ISO
maintain registers of currently valid International Standards.

ISO 7185 : 1990, Information technology - Programming
languages - PASCAL.

ISO 8730 : 1990, Banking - Requirements for message
authentication (wholesale).

- 3 Brief description
3.1 General

The Message Authenticator Algorithm works on the principle of
a Message Authentication Code (or MAC), a number sent with
a message, so that a check can be made by the receiver of the
message that it has not been altered since it left the sender.

3.2 Technical

All numbers manipulated in this algorithm shall be regarded
as 32-bit unsigned integers, unless otherwise stated. For
such a number N, 0 < N < 2%. This algorithm can be
implemented conveniently and efficiently in a computer with a
word length of 32 bits or more.

Messages to be authenticated may originate as a bit string of
any length. They shall be input to the algorithm as a sequence
of 32 bit numbers, Mi, M2 -- My, of which there are n, called
message blocks. The detail of how to pad out the last block M
to 32 bits is not part of the algorithm but shall be defined in any
application. This algorithm shall not be used to authenticate
messages with more than 1 000 000 blocks, i.e. n <1 000 000.

The key shall comprise two 32 bit numbers J and K and thus
has a size of 64 bits.

The result of the algorithm is a 32 bit authentication value.
The calculation can be performed on messages as short as
one block (n = 1).

Messages longer than 256 message blocks shall be divided
into segments of 256 blocks, except that the last segment
may have less than 256 message blocks.

Clause 4 specifies the segment algorithm. If the whole
message is within one segment this completes the
calculation and its output (Z) is the value of the authenticator.
If there are more than 256 message blocks, the mode of
operation specified in clause 5 shall be used.

The segment algorithm has three parts.

a) The prelude shall be a calculation made with the key
parts (J and K) alone and it shall generate six numbers Xo,
Yo, Vo, W, S and T which shall be used in the subsequent
calculations. This part need not be repeated until a new
key is installed.

b) The main loop is a calculation which shall be repeated
for each message block M, and therefore, for long
messages, dominates the calculation.

c) The coda shall consist of two operations of the main
loop, using as its message blocks the two numbers S and
T in turn, followed by a simple calculation of Z.

The mode of operation (see clause 5) is an essential feature
of the implementation of this algorithm.

Figure 1 shows the data flow in schematic form.

4 The segment algorithm

4.1 Definition of the functions used in the
algorithm

4.1.1 Generali definitions
A number of functions are used in the description of the

algorithm. In the following, X and Y are 32 bit numbers and
the result is a 32 bit number except where stated otherwise.

ISO 8731-2: 1992 (E)

CYC(X) is the result of a one-bit cyclic left shift of X.

AND(X)Y) s the result of the logical AND operation carried
out on each of 32 bits.

OR(X,Y) is the result of the logical OR operation carried
out on each of 32 bits.

XOR(X)Y) is the result of the XOR operation {modulo 2
addition) carried out on each of 32 bits.

ADD(X)Y) s the result of adding X and Y discarding any
carry from the 32nd bit, that is to say, addition
modulo 2%2.

CAR(X)Y) s the value of the carry from the 32nd bit when

Xis added to Y it has the value of 0 or 1.

MUL1(X,Y), MUL2(X,Y) and MUL2A(X,Y)
are three different forms of multiplication, each
with a 32 bit resuit.
(X11Y] is the result of concatenating the binary numbers
X and Y, in the left of most significant position.
The notation is extended to concatenate more
than two numbers and is applied also to 8 bit
bytes and numbers longer than 32 bits.
4.1.2 Definition of multiplication functions
To explain the multiplications, et the 64 bit product of X and
Y be [U[L]. Hence U is the upper (most significant) half of the
product and L the lower (least significant) half.

4.1.2.1 To calculate MUL1(X,Y)

Multiply X and Y to produce [Uj|L] with S and C as local
variables,

S := ADD(U,L); (1)
C = CAR(U,L); - (2)
MUL1(X,Y) : = ADD(S,C). - (3)

That is to say, U shall be added to L with end around carry.
Numerically the result is congruent to X*Y, the product of X
and Y, modulo (232 - 1). It is_not necessarily the smallest
residue because it may equal 22 - 1.

4.1.2.2 To calculate MUL2(X,Y)

This form of multiplication shall not be used in the main Qap,
only in the prelude. With D, E, F, S and C as local variables,

D := ADD(U,U); . (4)

E = CAR(U,U); - (5)

F := ADD(D,2E): . (8)
S = ADDIF \); -7
C = CAR(F L), .. (8)

MUL2(X,Y) := ADD(S,2C). . (9)

Numerically the result is congruent to X*Y, the product of X
and Y, modulo (2°2 - 2). It is not necessarily the smallest
residue because it may equal 232 - 1 or 232. 2.

4.1.2.3 To calculate MUL2A(X,Y)

This is a simplified form of MUL2(X,Y) used in the main loop,
which yields the correct result only when at least one of the
numbers X and Y has a zero in its most significant bit.

This form of multiplication is employed for economy in
processing. D, S, C are local variables,

D := ADD(U,U); .. (10)
S = ADD(D,L); (1)
C = CAR(D,L): . (12)
MUL2A(X,Y):= ADD(S,2C). .. (13)

The result is congruent to X*Y modulo (232 - 2) under the
conditions stated because, in the notation of MUL2(X,Y)
above, the carry E = 0.

4.1.3 Definition of the functions BYT[X||Y] and

PATIX]|Y]

A procedure is used in the prelude to condition both the key
parts and the results in order to prevent long strings of ones
or zeros. It produces two results which are the conditioned
values of X and Y and a number PAT[X,Y] which records the
changes that have been made. PAT[X,Y] < 255 so it is
essentially an 8 bit number.

X and Y are regarded as strings of bytes.
(XI1Y] = [Bol! B+{| B2|| Bs]| Bal| Bs|| Be|| B7]
Thus bytes Bo to Bs are derived from X and Bs to B7 from Y.

The procedure is best described by a procedure where each
byte B;is regarded as an integer of iength 8 bits.
begin
P.=0
fori:=0to7do
begin
P:=2"P;
if B[i]= O then
begin
P=P a
Bi]:=P
end
else
if Bli]= 255 then
begin
P:=P+1;
Bil=255-P
end
else
B'i] := BYi};
end
end;

NOTE 1 The procedure is written in the programming language
PASCAL (see ISO 7185), except that the non-standard identifier B
has been used to maintain continuity with the text. The symbols Bfi]
and B[i] correspond to B;and B';in the text.
The results are

BYTX||Y] = [Bol| B%l| B2| B3|| B4l| Bs|| Bs|| BY]
and

PATX||Y]=P
4.2 Specification of the algorithm
4.21 The prelude

WillKe] = BYT[J[IK];

P: PAT[J]IK];

Q

(1 +P)*(1 +P). .. (14)

First, by means of a calculation using J1, produce Hs, He, and
Hs from which Xg, Vo and S are derived.

J12:= MULT(1,d1); 022 := MUL2(J1,d1);

J1a 1= MULTJ12,012); J24 := MUL2(J22,J22);

J1e 1= MUL1(J12,014); J26 := MUL2(J22,J24);

J1g 1= MUL1(J12,J16); J28 := MUL2(J22,J26). .. (15)
Ha = XOR(J14,J24);
He := XOR(J16,J26);
Hg := XOR(J1g,J28). .. (16)

From a similar calculation using K4, produce Hs, Hz and Hg,
from which Yo, W and T are derived.

K1z = MUL1(K1,Ky); K22 1= MUL2(K,K1);
K1a := MUL1(K12,K12); K24 := MUL2(K22,K22);
Kis:= MUL1(K{,K14); K25 := MUL2(K4,K24);
K17 := MUL1(K12,K1s); K27 := MUL2(K2,K25);
K1g := MUL1(K12,K17); K2g := MUL2(K22,K27). ..{17)

H" := XOR(K15,K2s);

Hs := MUL2(H’,Q);

H7 := XOR(K17,K27);

Hg := XOR(K19,K2g). ..(19)
Finally, condition the results using the BYT function

[Xol[Yo] = BYT[Ha|{Hs]:

[VollW] := BYT[Hs||H7L;

[SIITI:== BYT{Ha|Ho]- .(20)

ISO 8731-2: 1992 (E)

4,2.2 The main loop

This loop shail be performed in turn for each of the message
blocks M;. In addition to M;, the principal values employed shall
be X and Y and the main results shall be the new values of X
and Y. it shall also use V and W and modify V at each
performance. X, Y and V shall be initialized with the values
provided by the prelude. In order to use the same keys again,
the initial values of X, Y and V shall be preserved, therefore
they shall be denoted Xo, Yo and Vg and there shall be an
initializing step X := Xo, Y := Yp, V = Vp, after which the main
loop shall be entered for the first time.

NOTE 2 The program is shown in columns to clarify its paraliel operation
but it should be read in normal reading order, left to right on each line.

V := CYC(V);

E := XOR(V,W); .21
X := XOR(X,Mj); Y 1= XOR(Y,M); (22)
F := ADD(E,Y); G := ADD(E,X);

F := OR(F,A); G := OR(G,B);

F := AND(F,C); G := AND(G,D); .(23)
X := MUL1(X,F); Y := MUL2A(Y,G). .(24)

The numbers A, B, C, D are constants which are, in
hexadecimal notation:

Constant A: 0204 0801
Constant B: 0080 4021
Constant C: BFEF 7FDF
Constant D: 7DFE FBFF

NOTE 3 Lines (21) are common to both paths. Line (22) introduces
the message block M;. Lines (23) prepare the multipliers and line (24)
generates new X and Y values. Only X, Y and V are modified for use
in the next cycle. F and G are local variables. Since the constant D
has its most signiticant digit zero, G < 23" and this ensures that
MUL2A in line (24) will give the correct result.

4.2.3 The coda

The coda shall be performed after the last message block of
the segment has been processed, by applying the main loop to
message block S, then again to message block T. Then the
result Z = XOR(X,Y) shall be calculated. This completes the
coda. If the message contains no more than 256 message
blocks, Z is the value of the MAC. Otherwise the value of Z
shall be used in the mode of operation specified in clause S.

NOTE 4 In order to calcuiate further Z values without repeating the
prefude (key calculation) until the key is changed the values Xo, Yo.
Vo, W, S and T should be retained.

5 Specification of the mode of operation

Messages longer than 256 message blocks shall be divided
into segments SEG1,SEG2...SEGs each of 256 blocks except
that the last segment may have from 1 to 256 blocks. The
number of segments is s.

The result Z of the segment algorithm specified in clause 4.
when applied to key J,K and a message M shall be denoted
Z(J.K,.M).

IS0 8731-2: 1992 (E)

algorithm once for each segment. The algorithm specified in
clause 4 shall be applied to the first segment to produce:

Z: = Z(J K,SEG).

Zs shall be concatenated with the second segment to
produce [Z+]|SEGg], to which the algorithm shall be applied:

22 = Z(J,K,[Z+]|SEGy)).

Note that Z; is treated as a message block which is prefixed
10 SEGs to form a Segment of up to 257 blocks.

Keyparts

Prelude

Storage for
future use

—

Initialization

Main loop

Contains :

MUL 1
MUL2A

Coda

If there are no more segments, Z shall be the resultant MAC
for the whole message, otherwise the procedure shall
continue, and for the ith segment:

Zi= Z(J.K,[Zi1||SEGY).

There are in total g segments; then Zg shall be the resultant
MAC tor the whole message.

NOTE 5 The prelude need be performed only once and its resuits (line
20) may be retained for use on each Z calculation, The main loop is
performed once for each message block, including the prefixed Ziblocks.
The coda is performed at the end of each segment, since it is part of the
segment aigorithm specified in clause 4.

Figure 1 - Schematic showing data fiow for the segment algorithm
applied to a segment of m message blocks

1ISO 8731-2: 1992 (E)

Annex A

(informative)

Test examples for implementation of the algorithm
A.1 General

For most parts of the algorithm, simple test examples are given. The data used are not always realistic, i.e. they are not values
which could be produced by earlier parts of the algorithm, and artificial values of constants are used. This is done to keep the test
cases so simple that they can be verified by a pencil and paper calculation and thus the verification of the algorithm’s
implementations does not consist of comparing one machine implementation with another. The parts thus tested are:

|

MUL1, MUL2, MUL2A;
— BYT[X,Y] and PAT[X,Y];

Prelude, except the initial BYT[J,K] operation;

Main loop.

The coda is not tested separately because it uses only the main loop and one XOR function. For testing the whole algorithm,
some results from a trial implementation are given.

A.2 Test examples for MUL1, MUL2, MUL2A

Itis suggested that the multiplication operations should be tested with very small numbers and very large numbers. To represent
a large number these examples use the ones complement. Thus if a is a small number (say less than 4 096) the notation a is
used to mean its complement, i.e. 2°2-1 - a,

For small numbers a and b, all three multiplication functions produce their true product a*b. When large numbers are used the
;uqnf;ilf)ns can give different results. They should be tested both ways round, with MUL(x,y) and MUL(y,x) to verify that these are
A.2.1 Test cases for MUL1

In modulo (232 - 1) arithmetic ais effectively - a, therefore the results are very simple

MUL1(a,b) = MUL1(a,b) = a*b

MUL1(ab) = a*b

Examples for testing are given in table 1.

A.2.2 Test cases for MUL2

MUL2(ab)=a*b—b+ 1

MUL2(ab}=ab—a+ 1

MUL2(ab) = axb— a~ b+ 1

Examples for testing are given in table 1.

A.2.3 Test cases for MUL2A

This will give the same result as MUL2 when tested with numbers within its range. For testing with large numbers, @ and b - 2°"
shall be used

MUL2A(ab) = a*xb- b+ 1
MUL2A(a,b) = a*b—a+ 1
MUL2A(EB-2%") =23 (1-p)+a'b+p-b-1

where pis the parity of a, the value of its least significant bit.

ISO 8731-2: 1992 (E)

That is, for even values of athe resultis 23! 4+ 2% - b- 1 and for odd values of athe resultis a*b- b.

Examples for testing are given in table A.1.

Table A.1 - Test cases for multiplication functions (hexadecimal)

Function a b Result
MUL1 0000 00OF 0000 000E 0000 00D2
FFFF FFFO 0000 000E FFFF FF2D
FFFF FFFO FFFF FFF1 0000 00D2
MUL2 0000 00OF 0000 0OOE 0000 00D2
FFFF FFFO 0000 000E FFFF FF3A
FFFF FFFO FFFF FFF1 0000 00B6
MUL2A 0000 000F 0000 000E 0000 00D2
FFFF FFFO 0000 000E FFFF FF3A
7FFF FFFO FFFF FFF1 8000 00C2
FFFF FFFO 7FFF FFF1 0000 00C4

A.3 Test examples for BYT and PAT

Three cases for testing these functions are listed in table A.2.

Table A.2 - Test cases for the BYT and PAT functions

Function X Y ﬂ

[Xiy] 00 00 00 00 00 00 00 00
BYT[X){Y] 010307 0OF 1F3F 7F FF
PATIX||Y] FF

[XiY) FF FF 00 FF FF FF FF FF
BYT[X|IY] FE FC 07 FO E0 C0 8000
PATIXIY] FF

{XilY] ABOO FF CD FF EF 00 01
BYT[X||Y] ABO1FCCD F2 EF 3501
PATIX|IY] 6A

ISO 8731-2: 1992 (E)

A.4 Test examples for the prelude
An example is given in table A.3. The initial BYT[J|[K] operation is not tested. It is assumed that the results from lines (14) are
J1 = 0000 0100,

K1 = 0000 0080, P=1.

Table A.3 - Test cases for lines (15) to (20) of the prelude

J1z 0001 0000 J22 0001 0000
Ja 0000 0001 J24 0000 0002
Jig 0001 0000 J2g 0002 0000
Jig 0000 0001 J2s 0000 0004
Ha 0000 0003
He 0003 0000
Ha 0000 0005
K1z 0000 4000 K22 0000 4000
Kis 1000 0000 K24 1000 0000
Kis »0000 0008 K2s 0000 0010
Kiz 0002 0000 K27 0004 0000
Kis 8000 0000 K29 0000 0002
H 0000 0018
Hs 0000 0060 (Q = 4)
Hz 0006 0000
Ho 8000 0002
[XollYo] 0103 0703 1D3B 7760 PAT[Xo|| Yo} EE (1110 1110)
[Vol|W] 0103 0508 1706 5DBB PAT[Vo||W] BB (1011 1011)
(ST 0103 0705 8039 7302 PAT[S|{T] E6 (1110 0110)

The PAT values obtained from conditioning the results of the prelude are quoted above for checking purposes but are not used in the
algorithm.

A.5 Test examples for the main loop

In table A.4, three examples of single block messages are given, using small and large numbers with the convention that 3 is 2°2 - 1 -
a. In the third example there are two cases of large numbers which must have zero in the 32nd bit, shown as 2 - 2°" and 3 - 2%
respectively. They could have been written 2%' - 3 and 2°' - 4 respectively. In order to keep the numbers small, artificial values of the
constants A, B, C and D are used. Three single block examples are followed by a message of three blocks, in order to check that the
implementation correctly retains the value of X, Y and W. The final S and T cycles of the coda are not included in this table.

Table A.4 - Test cases for the main loop (decimai)

Single block messages Three-block message
A B 4 1 1 4 1 2 2 1 2 1 2 1
C D 8 4 6 3 T 2% g 4 3 4 g g
\ W 3 3 3 3 7 7 1 1 2 1 4 1
Xo Yo 2 3 2 3 2 3 1 2 3 2 20 9
M 5 1 8 1
\ 6 6 14 2 4 8 cvyc
E 5 5 9 3 5 9 XOR
X Y 7 6 3 2 10 7 1 2 2 3 22 " XOR
F G 1" 12 2 1 2 T 5 4 8 7 20 31 ADD
F G 15 13 3 5 2 1 7 5 10 7 22 31 OR
F G 7 9 1 4 3 3« 3 1 10 3 18 27 AND
X Y 49 54 3 5 30 30 3 2 20 9 396 297 MUL
p4 7 6 0 1 29 165 XOR
.03

ISO 8731-2: 1992 (E)

A.6 Test examples for the whole algorithm

Using the original implementation of the algorithm, the four test examples with two block messages given in table A.5 were caiculated.

For ease of checking, intermediate results are tabulated: the results of the prelude and the X and Y values after each operation of the
main loop, that is for My, M2, Sand T.

Table A.5 - Test cases for the whole algorithm

J OOFF OOFF 00FF OOFF 5555 5555 5655 5555
K 0000 0000 0000 0000 5A35 D667 5A35 Des7
P FF FF 00 00
Xo 4A64 5A01 4A64 5A01 34AC F886 34AC F886
Yo S50DE C930 50DE C930 7387 CSAE 7397 COAE
Vo 5CCA 3239 5CCA 3239 7201 F4DC 7201 F4DC
W FECC AAsBE FECC AABE 2823 040B 2829 040B
M 5655 5555 AAAA AAAA 0000 0000 FFFF FFFF
X 48B2 04Ds 6AEB ACF8 2FD7 6FFB 8DC8 BBDE
Y 5834 A585 9DB1 5CF6 550D 91CE FE4E 5BDD
Mz AAAA AAAA 6555 5555 FFFF FFFF 0000 0000
X 4F99 BEO1 270E EDAF A70F Ci48 CBC8 65BA
Y BE9F 0917 B814 2629 1D10 D8D3 0297 AF6F
S 51ED E9C7 S1ED E9C7 9E2E 7B36 9E2E 7B36
X 3449 25FC 2990 7CDs8 B1CC 1CC5s 3CF3 A7D2
Y DBg1 02BO BA92 DB12 29C1 485F 160E E9B5
T 24B6 6FBS 24B6 6FB5 1364 7149 1364 7149
X 277B 4B25 28EA D8B3 288F C786 D048 2465
Y D636 250D 81D1 OCA3 9115 AS558 7050 ECS5E
Z F14D 6E28 AS3B D410 B9SA 62DE AD18 C83B

A further set of test cases for the whole algorithm is given in table A.6. The J and K values were chosen to give long strings of zeros

after conditioning. The message consists of 20 blocks of zeros. Intermediate values of X and Y are listed as well as the final
authenticator value Z.

J = 8001 8001, K = 8001 8000 (all message blocks are zeros)

Table A.6 - Test case for a 20 block message

Block X J Y z
1 303F F4AA 1277 A8D4
2 55DD 063F 4C49 AAEO
3 51AF 3C1D 5BCO 2502
4 Ad4A AACO 63C7 ODBA
5 4D53 901A ‘ 2E80 AC30
6 5F38 EEF1 ‘ 2AB0 91AE
7 F023 9DD5 3DD8 1AC6
8 EB35 B97F 9372 CDC6
9 4DA1 24A1 C6B1 317E
10 7F83 9576 74B3 9176
1 11A9 D254 D786 34BC
12 D880 4CAS FDC1 ASBA
13 3F6F 7248 11AC 46B8
14 ACBC 13DD 33D5 A466
15 4CE9 33E1 ! C21A 1846
16 C1ED 90DD CD95 9B46
17 3CD5 4DEB 613F 8E2A
18 BBA5 7835 ! 07C7 2EAA
19 D784 3FDC | 6AD6 EBA4
20 SEBA 06C2 | 9189 6CFA
S 1D9C 9655 ! 98D1 CC75
T 7BC1 80AB i AOB8 7B77 DB7¢ FBDC

ISO 8731-2: 1992 ()

Annex B

(informative)

Specification of MAA in VDM

B.1 General

In the following section is a complete specification of the MAA in the specification language called the Vienna Development
Method (VDM). The notation for the VDM is that of the emerging standard for VDM as described in VDM Specification Language
Proto-Standard, ISO/IEC JTC1/SC22/WG19, Document Reference INO.

It demonstrates how it is possible to write a standard in an unambiguous formal language. The style of the VDM has been guided
by the following:

¢ It has been written in a functional way so that it could be implemented easily although not necessarily efficiently in a
functional, logic or imperative programming language.

* ltretains as much of the naming, structure etc. used in the main part of this standard.
The VDM in the next section is written purely in VDM, including the comments. The comments point to sections of the main text
of the standard from which the VDM is derived. The VDM models a message as a sequence of natural numbers 0 and 1 (Bits).
B.2 The specification

definitions

values

— — 3.2 Technical
Word-length = 32;

Mazimum-Number-Size = (2 1 Word-length) — 1;
Mazimum-Number-Size-plus-1 = Mazimum-Number-Size + 1;
Mazimum-Number-Size-plus-1-div-2 = Mazimum-Number-Size-plus-1 div 2;

Mazimum-No-of-Message-blocks = 1000000;

I1SO 8731-2: 1992 (E)

—=4.2.2 The main loop
A=2x2T24+4><2T16+8x2T8+1;

B=0x2724+4128x2716+64x 218+ 33;
C=191x2724+239x2116+127 x 2 78 + 223;

D=125><2T24+254><2T16+251><2T8+255;

— — 5 Specification of the mode of operation

Maxz'mum-No-of-blocks-for-SEG’ = 256;

Alazimum—No-of-blocks-for-SEG—plus-l = Mazimum-No-of-blocks-for-SEG + 1;

types
— ~ 3.2 Technical
Number = N

inv N AN]Wazz'mum-;\’umber-Size-plus-l;

Bit =N
inv B & Be{0,1};

Message-in-bits = Bit*

inv M &
if (len M mod Word-length) = (
then ((len M div Word-length) < Maxz'mum-]\’o-of-]\fessage-blocks) A
(len M > 0)
else ((len M div Word-length) 4+ 1) < Mazimum-No-of-Message-blocks:

Alessage-in-blocks—plus-empty-/\[essage = Number~

inv M 8 len M < Ala:rz'mum-]\"o-of-]%essage-blocks;

Message-in-blocks = Alessage-in-blocks-plus—empty-Message
inv A &1 <len M;

10

ISO 8731-2: 1992 (E)

— — 3.2 Technical
- - 4.1.1 General definitions

Double-Number = Number™
inv D & len D =2;

Key = Double-Number;

- - 4.2.1 The prelude
Key-Constant :: X0 : Number

Y0 : Number
V0 : Number
W : Number
S : Number
T : Number;

functions

— — 8.2 Technical

Pad-out-Message : Message-in-bits — Message-in-bits

Pad-out-Message (M) &
let No-Eztra-bits = Word-length — (len M mod Word-length) in
if No-FEztra-bits = Word-length
then M
else M ™ Get-Application-defined-bits(M, No-Eztra-bits);

Get-Application-defined-bits (M : Message-in-bits, No-bits :N) E : Message-in-bits
pre No-bits < Word-length
post len E = No-bits;

Form-Message-into-blocks : Message-in-bits — Message-in-blocks

Form-Message-into-blocks (M) &
if len M = Word-length
then [Form-Number(M))

else [Form-Number(Get-head-in-bits(M, Word-length))] ~
Form-Message-into-blocks(Get-tail-in-bits(M, Word-length))
pre (len M > Word-length) A (len M mod Word-length = 0);

1

ISO 8731-2: 1992 (E)

Form-Number : Message-in-bits — Number

Form-Number (M) &

iflen M =1

then hd A

else hd M + 2 x (Form-Number(tl M))
pre len M < Word-length:

—~ 4 The segment algorithm
- — 4.1 Definition of the functions used in the algorithm
- - 4.1.1 General definitions

CYC : Number — Number

CYC(X) A
ADD(X,X)+ CAR(X,X);

AND : Number x Number — Number
AND(X,Y) &
if(X:O)V(Y=O)
then 0
else (X mod 2) x (Y mod 2) + 2 x (AND(X div2, Y div 2));

OR : Number x Number — Number

OR(X,Y) 2
(X =0)v(Y =0)
then X + Y
else maz(X mod 2, Y mod 2) + 2 x (OR(X div 2. ¥ div 2))

3

mar: I x 1 — 17
maz (X,Y) &
ifX>Y
then X
else YV,

XOR : Number x Number — Number
XOR(X,Y) A&
if ('=0)V(Y=0)
then X 4+ V
else (X 4+ Y) mod 2) +2 x (XOR(X div2, Y div 2))

3

12

ADD : Number x Number — Number

ADD(X,Y) &
(X +Y) mod (Mazimum-Number-Size-plus-1);

CAR : Number x Number — Number

CAR(X,Y) &
(X + Y) div (Mazimum-Number-Size-plus-1);

- - 4.1.2 Definition of multiplication functions
- -4.1.2.1 To calculate MUL1(X,Y)

MULL : Number x Number — Number

MULL(X,Y) &
let L= (X x Y) mod (Mazimum-Number-Size-plus-1),
U = (X x Y) div(Mazimum-Number-Size-plus-1) in
let S = ADD(U, L),
C = CAR(U,L)in
ADD(S, C);

- -4.1.2.2 To calculate MUL2(X,Y)

MUL2 : Number x Number — Number

MUL2(X,Y) &

let L= (X x Y) mod (Mazimum-Number-Size-plus-1),
U = (X xY) div (Mazimum-Number-Size-plus-1) in

let D =ADD(U,U),
E = CAR(U,U)in

et ' = ADD(D, 2 x F) in

let S = ADD(F, L),
C = CAR(F,L)in

ADD(S,2 x C);

ISO 8731-2:

1992 (E)

13

ISO 8731-2: 1992 (E)

- -4.1.2.3 To calculate MUL2A(X,Y)

MUL2A : Number x Number — Number

MUL2A(X,Y) &
let L=(X x Y) mod (Alarimum-]\’umber-Size-plus-l),
U=(X x Y) div (Ma:cz'mum-Number-Size-plus-l) in
let D= ADD(U, U)in
let S = ADD(D, L),
C = CAR(D, L)in
ADD(S,2 x C)
pre ((X div Mazimum-Number-Sz'ze-plus-l-div-2) =0)Vv
((Y div Ala;rz'mum-Number-Size-plus-1-div-2) =0);

- = 4.1.3 Definitions of the functions BYT[X,Y] and PAT[X,Y]

BYT : Double-Number —s Double-Number
BYT (K) &
let X =hd K,
Y =hdtl K in
let X' = [Byte(X,3), Byte(X,2), Byte(X, 1), Byte(X,0)],
Y’ = [Byte(Y,3), Byte(Y,2), Byte(Y, 1), Byte(Y,0)] in
let XY = X'~y
P=0in
let XY’ = Condition-Sequence(XY P)in
let X" = Get-head-in»blocks(XY’,4),
Y' = Get-tail—in-blocks(XY’,4) in
[Convert-Bytes-to-Number(X”)] r [Convert-Bytes-to-]\'umbcr(Y

Byte : Number x N — Number
Byte (N, B) &

if B=0

then N mod 2 18

else Byte((N div218) B — 1)
pre (B > 0) A (B < 3);

Condition-Sequence : Message-in-blocks x Nuymber —s Message-in-blocks

Condition-Sequence (M,P) A
iflen M =1
then [Condition-value(hd M, P)]

else [Condition-value(hd M, P) ™ Condition-Sequence (tl M, Changes(hd M, P)):

14

Condition-value : Number x Number — Number

Condition-value (B, P) &
let PP=2x Pin
let P =P +1in
fB=0
then P”
elseif B=2718—-1
then (278 —-1) - P”
else B;

Changes : Number x Number — Number

Changes (B, P) &
let P"=2x P in
let P" =P +1in
f(B=0)v(B=218-1)
then P”
else P’;

Convert-Bytes-to-Number : Message-in-blocks — Number

Convert-Bytes-to-Number (M) &
iflen M =1
then hd M

else Convert-Bytes-to- Number(tl M)+ (hd M) x 27 8 x (len M — 1)

PAT : Double-Number — Number

PAT (D) &
let X = hd D,
Y =hdtl D in

let X' = [Byte(X,3), Byte(X,2), Byte(X, 1), Byte(X,0)],
Y’ = [Byte(Y,3), Byte(Y,2), Byte(Y,1), Byte(Y,0)] in
let XY =X'"™Y',
P=0in
Record-Changes(XY , P);

'Record-Changes : Message-in-blocks x Number — Number

Record-Changes (M, P) &
iflen M =1
then Changes(hd M, P)
else Record-Changes(tl M, Changes(hd M, P));

ISO 8731-2: 1992 (E)

15

ISO 8731-2: 1992 (E)

- — 4.2 Specification of the algorithm
—-4.2.1 The prelude

Prelude : Key — Key-Constant

Prelude (K) &
let JIK1 = BYT(K) in
let J1 =hd JIK1,
K1l =hdtl JIK1,
P = PAT(K),
Q=01+P)x(1+P)in
let J12 = MUL1(J1,J1),
J22 = MUL2(J1,J1)in
let J14 = MUL1(J12,J12),
J24 = MUL2(J22,J22) in
let J16 = MUL1(J12,J14),
J26 = MUL2(J22,J24) in
let J18 = MUL1(J12,J16),
J28 = MUL2(J22,J26) in
let H4 = XOR(J14, J24),
H6 = XOR(J16,J26),
H8 = XOR(J18,J28) in
let K12 = MUL1(K1, K1),
K22 = MUL2(K1,K1) in
let K14 = MUL1(K12,K12),
K24 = MUL2(K22,K22) in
let K15 = MUL1(K1,K14),
K25 = MUL2(K1,K24) in
let K17 = MULL(K12, K15
K27 = MUL2(K22, K25
let K'19 = MUL1(K12, K17
K29 = MUL2(K?22, K27
let H' = XOR(K15,K25) in
let H5 = MUL2(H', Q).
HT7= XOR(K17,K2T7),
H9 = XOR(K19,K29) in
let XOYO0 = BYT([H4, H3)),
VOW = BYT([H6,HT)),
ST = BYT([H8,H9)]) in
mk-Key-Constant(hd X0Y0,hd t§ X0Y0,hd VOW hd tl VOW hd ST, hd t! ST');

in
)

n

e e S e

16

ISO 8731-2: 1992 (E)

- —4.2.2 The main loop

Main-loop : Message-in-blocks-plus-empty-Message X Key-Constant — Number

Main-loop (M, KC) &
let mk-Key-Constant(X,Y,V,W,S5,T)= KCin
iflen M =0
then XOR(X,Y)
else let Mi = hd M in
let V' = CYC(V)in
let E = XOR(V', W),
X' = XOR(X, Mi),
Y’ = XOR(Y, Mi) in
let F = ADD(E,Y’),
G = ADD(E,X') in
let F' = OR(F, A),
G' = OR(G,B) in
let F"" = AND(F',C),
G" = AND(G', D) in
let X" = MUL1(X',F"),
Y"” = MUL2A(Y',G") in
Main-loop(tl M, mk-Key-Constant(X", Yy' v, w,S, T))

— - 4.2.3 The coda

Z : Message-in-blocks x Key — Number

Z(M,K) &
let KC = Prelude(K) in
let S = KC.S,
T=KC.Tin
let M'=M "~ [S]™[T]in
Main-loop(M', KC);

17

ISO 8731-2: 1992 (E)

- - 5 Specification of the mode of operation

MAC : Message-in-bits x Key — Number

MAC(M,K) &
let M’ = Pad-out-Message(M) in
let M" = Form-Message-into-blocks(M') in
if len M" < Mazimum-No-of-blocks-for-SEG
then Z(M", K)
else let M =
[Z(Get-head-in-blocks(M", Mazimum-No-of-blocks-for-SEG), K))
~ Get-tail-in-blocks(M", A[aximum-!\’o-of-blocks-for-SEG) in
Z-of-SEG(M" K, }Ma:cimum-No-of-blocks-for-SEG-plus-l)

bl

Z-0f-SEG : Message-in-blocks x Key x N — Number
Z-0f-SEG (M, K, No-blocks) &
if len M < No-blocks
then Z(M, K)
else let M’ = [Z(Get-head-in-blocks(M, No-blocks), K')]
Get-tail-in-blocks(M, No-blocks) in
Z-0f-SEG(M', K, No-blocks);
~ — Auxiliary functions
— — (These are not directly derived from the main text of the standard)

Get-tail-in-bits : Message-in-bits x N — Message-in-bits
Get-tail-in-bits (M, No-bits) &

if No-bits =0

then M

else Get-tail-in-bits(tl M, No-bits — 1)
pre len M > No-bits;

Get-head-in-bits : Message-in-bits x N — Message-in-bits
Get-head-in-bits (M, No-bits) &

if No-bits =1

then [hd M]

else [hd M| "™ Get-head-in-bits(tl M, No-bits — 1)
pre (len M > No-bits) A (No-bits > 1);

Get-tail-in-blocks : Message-in-blocks x N — Message-in-blocks
Get-tail-in-blocks (M, No-blocks) &

if No-blocks =0

then M

else Get-tail-in-blocks(tl M, No-blocks — 1)
pre len M > No-blocks;

Get-head-in-blocks : Message-in-blocks x N — Message-in-blocks
Get-head-in-blocks (M, No-blocks) &

if No-blocks =1

then [hd M]

else [hd M] ™ Get-head-in-blocks(t! M, No-blocks — 1)
pre (len M > No-blocks) A (No-blocks > 1);

ISO 8731-2: 1992 (E)

19

